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SSPARAMA: A NONLiNEAR, WAVE OPTICS MULTIPULSE
(AND CW) STEADY-STATE PROPAGATION CODE WITH
ADAPTIVE COORDINATES

INTRODUCTION

Several methods of propagating CW high-energy laser beams through the atmosphere
have been reported previously [1,2]. This report will describe a method for propagating
multiply pulsed laser beams in a nonlinear atmosphere by adapting the coordinate system
to the amount of thermal blooming. This technique increases the accuracy of thermal-
blooming calculations and extends the capability of the code in the case of extreme beam
distortion.

The computer code SSPARAMA calculates the steady-state intensity pattern of a
train of high-energy laser pulses propagating through the atmosphere in the presence of
thermal blooming. Steady state is achieved when enough equally spaced, equal-energy
pulses have been propagated for transients in air heating to have died out. In the steady
state a single pulse will propagate in an atmosphere that has been heated by many
preceding pulses which have the same energy distribution as the pulse one is calculating.
The pulse widths are assumed to be short compared to the sound transit time across the
face of the beam, so that self-blooming will not take place. Blooming occurs only as a
result of air heating by preceding pulses. However, to avoid problems of plasma forma-
tion, the pulse width must be sufficiently long that the critical intensity for air break-
down is not exceeded. Finally, as the pulse is propagated from one coordinate plane to
another, coordinate transformations are performed to insure that the transverse scale
lengths are adapted to the amount of thermal blooming induced on the pulse train by the
negative lensing influence of the heated atmosphere.

Another requirement for steady-state propagation is that a cooling mechanism exist
for removing heated air from the path of the beam. In SSPARAMA, cooling is provided
either by a wind moving perpendicular to the propagation direction or by beam sluing
about an axis in the aperture plane perpendicular to both the wind and the propagation
directions. The steady-state density changes Ap introduced in the path of a given pulse
by energy absorption from all preceding pulses can then be expressed as [3]

— 0 2

Ap = -2 — aEp e > |¢>(x—nAts(vo +Q2),y,2)] 1)
Cs n=1

Manuscript submitted October 14, 19786.
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WHITNEY, MADER, AND ULRICH
where

z = the distance in the propagation direction measured from the aperture plane,

x = the distance in the wind direction measured from beam maximum intensity
in the aperture plane,

v = the ratio of atmospheric specific heats (= 1.4),
¢; = the speed of sound in air (=340 m/s),
o = the absorption coefficient for the laser radiation,
Atg = the pulse spacing,
Ep = the energy of each laser pulse,

vg = the wind speed along the x direction perpendicular to the direction of
propagation; and

£ = the angular sluing rate of the beam about the y axis.

Finally ¢ is the normalized steady-state energy distribution of each pulse at the z plane:

f 16(x, 3, 2)|2 dxdy = 1. @)

-o0

This density reduction Ap changes the index of refraction from its ambient value ng,
where ng ~ 1, to

n? =~ n02 + 3NAp,

where N is the molecular refractivity of air (*0.154 cm3/g). The distribution ¢ must
then be calculated self-consistently from the propagation equation:

. 9 02 02
2ik — + —— + —— + 3NEk2A 2yip = 0, 3
2 2+ 250 2 o910 3)

where & = 27t/\ is the wavenumber of the laser radiation. It is assumed in SSPARAMA
that at z = 0 the pulse train has a spherical phase front and a truncated intensity profile.
For example, when truncated Gaussian pulses are propagated

¢(xs Y, 0) = Ng¢g(x, y), x2 + y2 < 2(12,
=0, x2 + y2 > 242, )
where
Bg(x, y) = a\l/; o-[1+(ika®/F)] [(x2+y2)/a®]/2 5)
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and N is a normalization constant insuring that Eq. (2) is satisfied at z = 0. Two scale
lengths, a and f, are defined in Eq. (5). The scale length f, the initial curvature of the
phase front, defines the distance from the aperture to the focal plane. At a distance a
from the aperture center the beam intensity falls to 1/e of its maximum value, and the
beam is truncated at 1/e2 of maximum intensity.

Altogether eight variable physical quantities, a, f, &, «, Ep, Ats, vg, and 2 appear in
Eqgs. (1) through (5). All variations will not however lead to a mathematicaily distinct
problem. In SSPARAMA Eqgs. (1) through (5) are scaled so that distinct propagation
problems are defined in terms of five dimensionless parameters. The program is designed
to accept either the set of data with dimensions or the dimensionless set, and both sets
are printed out.

The scaling of Eqgs. (1) through (5) is carried out via the coordinate transformations

A = ._x_ o= .Z rdi— ..z_
X = a’ y = a’ z2 = f (6)
and the variable transformation
(%, 5,2) = ad(x,y, 2). (7)

By multiplying Eq. (8) through by a3, one can write the propagation equation in a form
which identifies the five dimensionless parameters characterizing propagation in
SSPARAMA:

2~
}¢=0- (8

5[%— 2814 Ng), 5, s]

o}

3, 92 . 92 S
N, =— + —— + —— — NpN,e Na®
{Z’N’* o7 " ox2 o3z  m et ,;1

The five parameters, N;, N¢, No, Ny, and N;, are defined as

Ny = ka?lf, | 9)
N, = .3Nk(fy; 12)oszp’ (10)
esa
No = of, (11)
_ _2a
No = o4 (12)
and
N; = Qf/vg. (13)

Np, is the Fresnel number of the free-propagation problem, and N,, Ny, Ny, and N; are
coupling strength, absorption, overlap, and sluing parameters respectively. N, was intro-
duced by Wallace and Lilly [4] and called the pulses-per-flow-time parameter. It
measures the number of preceding pulses which have heated the air across the beam

3
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WHITNEY, MADER, AND ULRICH

aperture as the pulse under study begins to propagate. The solution to Eq. (8) is ob-
tained subject to the energy normalization

[i3 5,02 aza5 = 1 a9

and the initial condition
3(,5,0) = (§le-Ne@+52)/2 (15)
 where |§| = 0 for ¥2 + 52 > 2.

Equations (8), (14), and (15) are numerically solved in SSPARAMA on a 64-by-64
grid in the Xy plane. Since one would like to use as much of the computational grid as
possible to describe the variations in beam intensity, a scheme for adapting the coordi-
nate grid to the propagation must be used. For example, as the beam propagates, the
initial focusing causes the beam intensity pattern to decrease in size until the negative
lensing effects of the heated atmosphere accumulate to thermally defocus it. Moreover,
since the wind removes heated air from the path of the beam from left to right, a
thermal gradient is established that deflects the beam from right to left. If the computa-
tional grid were not moved or changed in size as the beam intensity was calculated from
aperture to focal plane, the intensity pattern would either be poorly sampled as it de-
creased in size or it would expand or deflect to reach the boundary of the grid and
invalidate the calculation.

A technique for adapting the computational grid to local changes in the size or
location of the beam intensity pattern has been developed by Herrmann and Bradley [5].
A slightly modified form of their technique has been incorporated into SSPARAMA and
will be described in the next section of this report. In the third section the numerical
procedures used in SSPARAMA will be described, and in the fourth section the code
usage will be explained.

COORDINATE-SYSTEM ADAPTION

The dimensionless form of the propagation equation can be rewritten more com-
pactly as

[2iN,0; + 0F +0F + k%% (n2 - 1)]§ = O, (16)

where n2 — 1, the nonlinear index of refraction, depends on ¢ as given by Eq. (8). The
XyZ coordinate system is normalized to the constant lengths a and f, and is fixed in space.
In this system therefore the beam will lie symmetrically about the origin of the %% plane
only at Z = 0 with an extent of order 1 (see, for example, Eq. (15)). When z # 0, a new
set of xy coordinates is needed to maintain the two properties that the beam be centered
about the xy coordinate origin and be of order 1 in extent. In general, one can relate
the xy and xy coordinates by a set of scale parameters Dy and Do and a deflection
parameter X, which are functions of Z. Since one would like to solve Eq. (16) in a set of
coordinates that adapt to changes in beam size and direction, the coordinate transformation

4
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must be related to these beam changes as determined by the linear and quadratic terms
of the phase front. By analogy therefore with the transformation to dimensionless
parameters, one must perform simultaneous coordinate and variable transformations.
The form of these transformations is suggested by linear propagation theory:

y = \/_% , (18)
. _;;k , (19)

and
3 = v 0i(B1 72+ 85240741 +75) (20)

/DD,

The constant scale change from 2z to z is done for convenience to eliminate N frEm the
z-derivative term in Eq. (16):

2iNRdz = 2id,.

The factor 1/\4/D1D2 is removed from ¢ to insure the form invariance of the energy
normalization:

fl%lz dxdy =f|w|2 dxdy = 1. (21)

When Egs. (17) through (20) are substituted into Eq. (16) and when the nonlinear
term is of negligible size and the beam has a Gaussian profile, D1, Dg, X, &1, &2, B, ¥1,
and Y2 as functions of z can be analytically determined for all z. However, when the
nonlinear term is important or when a non-Gaussian beam is propagated, the &’s and f,
which represent the effective quadratic and linear phase changes throughout the xy plane,
can no longer be so determined. One must adopt a more limited strategy for the em-
ployment of Egs. (17) through (20).

Consider, for example, that the quantities Dy, D3, X, &, ds, B, ¥1, and 52 are
known at z = z( and that their dependence on z is to be analytically determined as one
propagates to a neighboring xy plane at z5 + Az. Since

2 = 5, % (22)
2 - 1 2
8 = D, 3.2, (23)

o
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WHITNEY, MADER, AND ULRICH

and
_ 1 x 0, X Y .
0; = E[azf(gazlnpl+m)ax - zazlnDzay], : (24)
one finds that
- w Va4 —2 -~ ~2 - ~ -~
2N,z + 02 + 02 + k2a2(n2 - 1)]——— ef(Q1x°+02y +BE+71+72)
[ ROz x y ( )]{I/Dng

i3 72 +89 52+ fE+T1 +72)
- et 2 il {Zi(az—-gazlnD1ax_——l—azxax_gazlnD2 a)’)

&DiDy vD1
. o 1 _ 3
- —;—(az InDy + 3, InDs) = 28,(71 +73) + 7 32 - [28,4/D;x +X) + f12
1

2i

1

+

[2& (/Dyx +X) + B9, + 2 + 1—)1; 32 - 4&2D,y?

+ 4idigyd, + 2idy + k2a*(n%-1) } Y = 0. (25)

For vanishingly small n2 — 1 and for a real Gaussian profile {¥/(x, y, 2g) one would deter-

mine D1, Do, X, &1, &2, B, ¥1, and 72 from the requirement that Eq. (25) be capable of
being put in the form

[2532 + Bl(axz +1-x2) +-L-)1—(3y2+1—y2) + k2a2(n2—1)]¢ =0. (26)
1 2

Then, as ¥ was propagated to z¢ + Az, it would acquire no z dependence and would
remain real and Gaussian; that is, all of the z dependence of ¢ would have been accounted
for in Dl’ e, ’72.

For the imaginary terms of Eq. (25) other than 2i 0, to vanish, the quantities D1,
Do, and X, which determine the scale and location of the xyz coordinate system, must
satisfy the equations

0;InDy = 4ad,, (27)
3, InDg = 48z, (28)

and ‘
9, X = 261X + . (29)

On the other hand, for the real terms involving 9x and 9y to vanish and for the scale
functions Dy and Dg to be factorable from the remaining x and y terms respectively, the
phase functions a1, dg, 5, ¥1, and Yo must satisfy the set of equations

6
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2D, 9,8, + 482D, = —, | (30)
Dy, .
~ ~ 9 _ 1
2Dy0,8y + 485Dy = — (31)
. D2
3,8 + 2X0,& + 28, (24X +f) = 0, (32)
~ 9a ~ ~ e _ 1
20,7, + 2X2%0,& + 2X0,8 + (28X +()? = “p (33)
1
and
| 20,5, = - . (34)
D, ,

Thus Eqgs. (27) through (34) will determine all of the z dependence of ¢ when Y(x, y, 2q)
is real and a Gaussian function of x and y and there is no lensing effect caused by heating
of the atmosphere; that is, Eqgs. (27) through (34) will describe beam focusing in the
absence of diffraction and nonlinear media phenomena. They are of more limited utility
when such phenomena are present. In this case, during the displacement of ¢ from z, to
29 + Az, linear and quadratic phase changes will arise from two sources. As a result of
focusmg at z = zg, the initial phases &;(z¢), &2(20), and S(zg) will become &1(zg + Az),
Gia (20 + Az), and B(zo + Az) through the solution to Egs. (27) through (34). In addition
however  at zg + Az will acquire linear and quadratic phases, Af, A&y, and Adgy respec-
tively, as a result of diffraction and thermal blooming. Thus at zg + Az a new factoriza-
tion of ¢ must be made, namely, :

' -
Vi3 20489) itih(ao e+ Gi(ag+he)i2 +fzorAs)i iy ]
\4/D1(Zo +AZ)D2(ZO +AZ) : ‘

¢, 5,2, + AZ) =

(35)

if ', which is to be propagated from zg + Az to zg + Az + Az, is not to initially have
quadratic or linear phase terms. After each step in propagation therefore &, &2, and 8
must be redefined as '

d1(zg + A2) = By(zq + Az) + ARy, (36)

dp(zg + Az) = dig(zg + A2) + Ady, (37)

and o
Blzg + Az) = Blzg +A2) + AF | (38)

in order to adapt the coordinate-system determination from Egs. (27) through (29) to
changes in phase that result from focusing, diffraction, and therma! blooming.

ATITSSYTONN



WHITNEY, MADER, AND ULRICH

In SSPARAMA, V is propagated from one z plane to another by finite-differencing
a phase-transformed version of Eq. (26). Then Awj, Aag, and Af are found in the xyz
coordinate system using the method of phase minimization discussed by Herrmann and
Bradley [5]. One requires that

f WI2[V(Axy x2 + Aagy? + ABx — v)]1% dxdy = minimum, (39)

2=z9+Az

where Y(x, y, 29 + Az) = [yle'?. It follows that

DiE - B,C;
Aoy = —————75, (40)
2(A1E _B]_ )
ACqy - BD
AB = 1v1 12 1 (41)
AlE _Bl
and
Aoy = 22 (42)
0y = —=,
2 2A2
where
Al Efledllz dxdy, A2 Efyzl‘plz dxdy’ (43)
B, = fxw dxdy, | (44)
Ci; = Im |Y*0, ¢ dxdy, (45)
D, = Im |xy*0,Ydxdy, Dy = Imfyw*ayw dxdy, (46)
and
E zﬁwz dxdy = 1. (47)
The factorization
U(x, , 29 + Az) = yleilBarx®+Aazy®+Abx) (48)

will then define ' at zg + Az as a wave function of minimum quadratic and hnear phase.
In particular, if ¥ is exactly a Gaussian beam, ¢’ will be real.
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The relationship between {Aay, Aag, A} and {Ad;, Adg, AB} is found by substi-
tuting Egs. (17) and (18) into Eq. (48):

. Aay '
Ag, = —%, (49)
Dy
~ o _ Ao
Ady = =2 (50)
D,
and
A 2801 X
AR = b _ 22us (51)
v Dy Dy

A similar set of equations will hold between {&;, &g, B} and {a3, ag, B}, which are
computed directly in the xyz coordinate system. When reexpressed in terms of oz, ag
and 8, Egs. (27) through (29) become

0;D1 = 4o, (52)
;D9 = 409, (53)
and
VD
and Egs. (30) through (32) transform into
0 = —— (1 +40.2), (55)
2D,
0,0y = ——(1 +4a), (56)
2 2D2
and
20[1‘3 .
0.8 = —. 57
2B D, (57)

Egs. (52) through (57) must be solved in terms of initial values at z9. The solutions are

201 9(29) 2 z -z 2
_ 1,2R0) ~ 20
Dy,9(z) = D1 2(z0) {[1 + _—D1,2(20) (= zo)] + [D_—l,z(zo)] }, (58)

ATITSSYIIND



WHITNEY, MADER, AND ULRICH

01,2(2) = @ 5(z0) * 11+ [20) 5(20)]12) 0 (59)
1,2 1,240 ) 1,2(%o D1 o(z0) »
1,2\<0
204 (29) 2 Tz~ 202
BE) = Blzg)4/ |1+ (z-2zp)| + 1 (60)
0 Di(z) ~ ° D (2)
B(zo)
X(2) = X(z9) + ——— (z - 2j). (61)
V' Dj(29)
‘ Finally the procedure for solving Eq. (26) in SSPARAMA is similar to the one
described in an earlier report [2]. A phase transformation on Y is made:
B(x,,2) = Y(x,y,2) e WDLExY a2 | (62)
where ‘
ge,y,2) = 2 (1-a2) + L 1-5%) + k2202 - 1), (63)
D, D, "
The equation for ® follows from Eq. (26):
[2i0, + H(x, y,2)]®P = O, (64)
where
= 2 gd [ 1 02 + i‘a V2> (i/2)f:'gd2'; ' 65
H=e ,,<D1xD2yeo (65)

\

By picking z{ to lie between 29 and 2o + Az, one can propagate & from z¢ to z¢ + Azg,
with first-order accuracy, by solving the equation

[2i3, + H(x, y, 2))]® = (2:'32 r 102+ iay2>c1> = 0. (66)
D, D,
Equation (66) is solved by Fourier transforming & [6],
By, ko 20) = [el1x020) 0, y, 20) dndy, (67)

and propagating ® to z¢ +Az:

~ ~ ’ . 2 2o+ Az 2 rz,+Az
q)(kl’ k2’ 2z + Az) = (D(kl, k2’ zo)e(l/z){kl Lo [1/D1(z)]dz+k2_£o [1/D2(z)]dz}. (68)

10
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The inverse transformation to Eq. (67) then yields ®, and Eq. (62) yields y(x, y,
zo + Az).
NUMERICAL PROCEDURES

The phase function g(x, y, z) of Eq. (63) can be written more usefully in the form

_ s g0) &kyz) C(69)

Di(@) Dg(2) /Di()Ds(2)

where
g1(x) =1 - x2, ' (70)
g2y) =1 - y2, (71)

and |
o ‘ 12 _
g5(x, 9, 2) = NN, e N"‘N"Z; Cb[x - \/_1(?)(1 +N,Ny2), , ] (72)

This expression for g5 is found by substituting the new variables x, y, z, and @ into
Eq. (8). The phase integral

Ap = f g(x, v, 2') 2’
2

appearing in Eq. (62) can now be partially evaluated and expressed in the form

_ ? g3(xy,2)
A0 = g1(x)AZ, + go(¥)AZy - D.G)D (z) (73)
‘ 1 2
where
zZ 4 - 2 » 2'=z
AZl’z = - = tanh~1 ({1 + [2“1 2(20)]2} RN 20[1,2(20)> (74)
26 D1,2(2) - D1,2(20) 2'=2;

The differential quantities AZ; and AZ, are similarly named as the coordinate differ-
ential AZ that was used in earlier code calculations Wthh 1nvolved only a smgle scaling
function D(z).

To complete the evaluation of Af, one must know the z dependence of g3, that is,

the z dependence of |®[2. Two options are provided in SSPARAMA, for evaluating Af,
depending on whether one has determined |®|2 at one or both of the integration

11
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endpoints. The procedures work as follows: Suppose first that the solution for Y(x, y, z¢)
has been obtained. Then one can compute g(x, y, 20), since |®(x, y, 20)I12 = IY(x, y, 29)I2.
To find ®(x,y, 29), however, one must evaluate .

z’
Ab’ Ef g(x, y, 2')dz', (75)
20

where zg lies between zg and the plane zg + Az to which one would like to propagate .
If ¢ is known only at zg, the zeroth-order approximation

A0’ ~ g1(x)AZ) + g2(¥)AZy - g3(x,y,20)AZ19 (76)

must be made, where

(77)

% dz'
AZyy = f .
2o VD1(2)D2(2)

Equation (66) can now be solved for ®(x, y, zg + Az) by the use of Fourier trans-
formations. Finally on performance of the phase integral

zo+Az
A9" = f g(x, v, 2') d2’ (78)
zl

Y(x, y, 20 + Az) can be obtained from ®(x, y, 29 + Az). In keeping with the accuracy
with which A8’ was approximated, A" can be approximately evaluated as

A8" ~ g1(x)AZ] + g,()AZY ~ g3(x, y, 20 + A2)AZYs. (79)

The differentials AZ7, AZ,, and AZ], are defined by the integrals of Egs. (74) and (77)
with the integration limits as specified in Eq. (78).

Suppose however that initially both y(x, v, z0) and ¥(x, y, 29) are known and that
the values of  at zp are to be propagated to the plane at z9 + Az. In this case the
phase integrals defined in Eqgs. (75) and (78) can be approximated using the integration
formula '

X0 +Ax
T fa)e(x) dx ~ waf(xg) + waf(xg + Ax), (80)
X0

which has fﬁ‘st-order instead of zeroth-order accuracy. The weights w; and wg are thus
determined such that equality will hold in Eq. (80) whenever f is a linear function of x:

2% xg+Ax 9 xg+Ax '
Cwy = <1+——)f g(x)dx - —f xg(x) dx - (81)
Ax Ax

X0 *o

12
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and

9 x5 +Ax 2x¢ xo+Ax
wy = Z.;f xg(x)dx — —A_x-f 8(x) dx. (82)
(i}

xo X,
Then, for example, in place of Eq. (76) one would have that
A0' ~ g1(x)AZ] + g3(¥)AZy — g3(x, ¥, 29)AZ3 - g3(x, ¥, 20)AZy, (83)

where AZ5 and AZ) are related through Egs. (81) and (82) to AZj, and an integration

over the function zA/D1(z)D2a(2):

2( z z(') r gt
Azy = 0 pgr, - 2 [ 24 (84)
20 ~ 20 20 ~ 20 Jyy VD1(z')D3(2")
and
' 2 % z' dz’' '
AZ4 = 7 |: ; ~ ZoAZ12 . (85)
20 = 20 |, VD1(z')D2(z")

Although integrations over D{l and D§1 can be carried out analytically in terms of
inverse hyperbolic tangents (as in Eq. (74)), integrals over 1A/D1Dg produce elliptic
functions. Both sets of integrations are handled in SSPARAMA numerically, with third-
order accuracy, using a second integration formula:

xo +Ax Ax
j f(x)dx =~ '?[f(xo +Axy) +flxg + Axg)l, (86)
xp
where Ax; = (1 -1A/3)Ax/2 and Axé =1+ 1/\/§)Ax/2. Again, as an example, con-

sider Eqgs. (84) and (85) and define

1

fi = (87)
b VD11 Da(zy)
and
fp = ——t— (88)

~ VDiG2)D3) |
where 21 = zg + (1 - 14/3)[(20 — 20)/2] and zg = z¢ + (1 + 1/3)[(20 — 20)/2]. One can

complete the numerical evaluation of AZ3 and! AZ}4 by rewriting Eqs. (84) and (85) with
the use of Eq. (86), in terms of f; and fy:

13
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'
ZO -

2\/_

AZy = ~ f2) - (89)

and

e

G-z (D) - azy )

The procedure by which Egs. (80) through (90) are employed requires that two sets
of values of | be stored at any time by SSPARAMA. At the beginning of the propaga-
tion step descnbed above, the two arrays contain the values of Y(x, y, z9) and Y(x, vy,
20), where zg < zp < zg + Az. At the end of the propagation step the values of
V(x, ¥, 20) have been replaced by Y (x, y, 29 + Az). These new values can then be used
to propagate Y(x, v, 20) to Y(x, ¥, 20 + Az'), where now zy < zg + Az < z{ + Az'. The
process of alternatively propagating one and then the other of the two arrays is repeated
until the focal plane, defined by the initial beam curvature, is reached.

Since both arrays are initially assigned the values Y/(x, y, 0), the process of
propagating one array past the other cannot begin until after the first propagation step.
The first 2 step is therefore taken using Eqgs. (76) and (79) to determine A9’ and A9”. In
general the incremental steps Az are selected in SSPARAMA according to a criterion that
the phase changes induced by g5 as computed from Eq. (76) be no larger than some pre-
assigned value of order 1 for all x and y. However, to carry out the first advancement of
¥ at z0 = 0, half of the initially computed Az value is used. This leapfrog procedure is
summarized for the first few z steps in Fig. 1.

The advantage conveyed by using Eqs. (76) and (79) to evaluate the phase integrals
A8’ and A9" is that only one Y array is needed in carrying out the calculation. Because
of the reduced accuracy in computing A6’ and A", however, smaller z steps are in
principle required to obtain the same results as when two arrays at different z planes are
used. To allow a quantitative comparison of these two procedures, both options for
propagating ¥ were installed in SSPARAMA and can be selected according to the value
of one of the input parameters to the code. For the same reason, another input param-
eter is also available that allows one to adapt or not adapt the coordinate system to the
amount of diffraction or thermal blooming occurring during beam propagation.

PROGRAM OPERATION

This section will describe the input parameters required to run SSPARAMA and
explain the data included in the output. A complete listing of SSPARAMA is included in
Appendix A.

To use program SSPARAMA, two input cards are required. The first specifies cer-
tain numerical parameters and selects various program options, and the second defines the

14
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DEFINEY; =¥,
PHASE CHANGE ¥,~®,.

SET ay'=05'= — %Ny,

AND SET f8= Aoy = Aay =AF =0,

z=0 z=4z

I Advance y:torAzg

NOW FIND o, az, AND 8
AND Acy, Aoy AND AB.

USE TO APPLY PHASE
CHANGE (¥y(z=01-+®,(z =0}

z=0 z=Az z‘=Azo+Az| '

Advance ®, 10 Az; + Azg

L 1
STEP2 < ®182) £iND gy, ap, AND § AND

Aay, Aa; AND 43 AGAIN
AND USE TO APPLY
PHASE CHANGE

L W, [Azg) 4 (Az0).

z=0 z=42 z= A10+Az1 z= A20+Az1+AzZ
Advance &, TO Azg + Az +42; |

|
STERS ) Oaz) - bzt A2} pNp 4y, o, AND

AND Aay, day, AND Ap.
APPLY PHASE CHANGE
WylAzg + Azy)>0,Azg + Azy),

< cee

Fig. 1—Leapfrog procedure for advancing the wave function ®

particular physical situation. This second card can contain the actual physical parameters

or a set of dimensionless parameters.

First Input Card

The parameters read from the first card are listed in Table 1. A description of each

of these parameters is as follows:

Table 1-—Pararheters Specified by the
First Input Card

Columns Name Format || Columns Name Format
1-5 PHIMXX |.. F5.0 36-40 | NPM 15
6-10 ROCULT| Fb5.0 41-45 |NBM 15
11-15 | HXY F5.0 46-50 | NPLOT I5
16-20 | NXY 15 -61-65 | NCT I5
21-25 I NCW 15 56-60 | NRS 15
26-30 | NAD 15 61-65 | NPUNCH 15
31-35 | NMS 15 75-80 |NID A6

15
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PHIMXX. This is the maximum allowed phase change in radians for any point in the
computational grid at each z step. It is used to define the newly computed z increments
HZN at each step, where

g3(x, Ys z)max

VDD,

in which g3(x, ¥, 2)max is the maximum value in the computational grid of g3, given by
Eq. (72). PHIMXX is nominally entered as 1.0. If more 2z steps are required, PHIMXX
can be decreased. In this case the z increment is tied to the amount of heating in the
atmosphere, becoming smaller automatically as large density changes take place or
becoming large and efficient when near-vacuumlike propagation occurs. If HZN exceeds
0.1 of the total propagation distance, the smaller of these two z increments is used. If .
HZN at any time is less than 107 times the distance to be propagated, the program exits
and an error message will be printed.

HZN = PHIMXX,

ROCULT. This is used when propagating uniform circular beamshapes with an obscuring
disk or a uniform rectangular beamshape. In the former case ROCULT is the ratio of the
occulting radius to the total radius. For a rectangle, it is the ratio of the y to the x
dimension. ROCULT is used only when NBM equals 4 or 5.

HXY. This parameter defines the size of the computational grid relative to the aperture
radius by

Ax = Ay = HXY

where Ax and Ay are the sizes of individual computational cells, which start out square.
Depending on the beamshape, values between 0.1 and 0.3 are typical.

NXY. This is the number of individual computational cells along the edge of the entire
computational grid. The FFT routine is more efficient when NXY is a power of 2, and
NXY is normally entered as 64.

NCW. This parameter permits CW propagation to be included by allowing the summation
in Eq. (72) to be replaced by an integral [7]. Before the summation is replaced, Eq.
(72) can be written in terms of physical parameters as

3N(y - 1)k20E, e %% =
(r-1) 5 P Z |P[x — n(vg +2)At, y, 2] 12.
Cg n=1

This summation is performed when NCW = 0. When NCW = 1, the program is in the CW
mode, and Eq. (72) is replaced by

8N(y - 1)k2aPe2?, /D]
Csz (UO + QZ)

0
j [B(x +x', y, 2)|2 dx',

16
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where P is the average power of a CW laser (P = Ep/At). The integration is performed
using a simple trapezoid rule. ,

NAD. When NAD = 0, the coordinate system adaption is not included. When NAD =1,
it is included.

NMS. When NMS = 0, the midplane integrations are not used. When NMS =1, they are

used.

NPM. When NPM = -1, the second data card contains physical parameters. When NPM =
+1, the second card contains dimensionless parameters.

NBM. This parameter selects one of the five beamshapes available within the program:

NBM = 0 —Infinite Gaussian, with WIDTH (a parameter read from the second input
card) being the e~! intensity radius;
NBM = 1—Truncated Gaussian, with WIDTH being the el intensity radius, trun-
\ cated at /2 X WIDTH or e~2 intensity radius;

NBM = 2 —Uniform circular aperture, with WIDTH being the actual aperture radius;

NBM = 3 —Uniform square aperture, with WIDTH being the dimension from the
center of the square to the edge (half-side dimension) in the x or y
direction;

NBM = 4 —Uniform circular aperture and an occulting disk, with WIDTH being the
total aperture radius and, as stated previously, with ROCULT being the
ratio giving the occulting disk radius; ’

NBM = 5 —Uniform rectangular aperture, with WIDTH being the half-side x dlmen-
sion and ROCULT being the ratio giving the y dimension. :

NPLOT. This determines the type and the number of plots given in the output:

NPLOT = 0—No plots;
NPLOT = 1—Final contour plot only;

NPLOT = 2—Final contour plot plus a plot of average intensity and peak intensity
versus z;

NPLOT = 3 —Preceding plots plus a plot of flux and area versus irradiance;
NPLOT = 4 —Preceding plots plus a contour plot of aperture intensity;

NPLOT = 5—Preceding plots plus Fourier-transform contour plots of aperture and
final intensity distributions.

NCT. This determines the contour levels used in the contour plots:

NCT = 0 —Contour plots use contour levels with 10%wincrements;
NCT = 1 —Contour plots use 3-dB contours (0.5, n=1, 2, ..., 10).

NRS. When NRS = 1, the final contour plot is corrected and standardized according to
an internal criterion, to remove the effects of different amounts of coordinate system

17
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adaption in the x and y directions. When NRS = 0, this plot can appear with nonuni-
form axes.
NPUNCH. This determines whether there is a punched-card output:

NPUNCH = 0~ No punched-card output;

NPUNCH = 1 —Punched-card output for later data processing.

NID. Up to six characters can be used to identify a run or a series of runs on both the
printed and punched output.

Second Input Card

The data contained on the second input card depend on the value of NPM. If NPM
= —1, the physical parameters listed in Table 2 will be read. A description of each of
these parameters is as follows:

OM. The slew rate in radians per second. Table 2—Parameters Specified
by the Second Input Card

HT. The interval between pulses in seconds, or When NPM = -1
the reciprocal of the pulse repetition frequency
(PRF). For CW propagation this should be set to Columns Name Format
1 second.

1-5 OM F5.0
ALPHA. The absorption coefficient « in km™1. 6-10 HT F5.0

11-15 ALPHA F5.0
ALPHAS. The scattering coefficient in km1. 16-20 | ALPHAS F5.0
ALPHAS is used to compute the total extinction 21-30 WIDTH E10.0
but is not included in the absorption that pro- 31-40 WN E10.0
duces atmospheric heating. 41-50 VO E10.0

51-60 ENERGY | E10.0
WIDTH. The aperture radius a in centimeters. 61-70 F E10.0
The particular definition is given in the preceding 71-80 ZF E10.0

subsection for each value of NBM.

WN. The wavenumber k& = 2r/\ or 2m/f\, where 8 is the beam quality and A is the beam
wavelength in centimeters.

VO. The wind velocity vy in meters per second.

ENERGY. The individual pulse energy E, in joules. For CW propagation ENERGY is
the average power in watts.

F. The focal length in kilometers.
ZF. The distance at which the calculation is to be stopped in kilometers.

As already shown, the propagation is a function of five dimensionless parameters.
Different combinations of the eight physical parameters, which are required to define

18
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these dimensionless parameters and which lead to the same values of the dimensionless
parameters, will produce identical results. In order that a unique physical situation be
specified, some physical quantities are also read from the second data card when NPM =
+1 (Table 3). They are not used to define the physical situation but rather to assign
units to the derived quantities at the end of the calculations. The quantities read when
NPM = +1 are: ’

Table 3—Quantities Specified F. Focal length in kilometers.
by the Second Input Card
When NPM = +1 HT. Pulse interval At in seconds (=1 second for
CW).
Columns Name Format
PNA. The f number = WIDTH/F.
1-5 F F5.0
6-10 HT F5.0 PNALF. Absorption number, ALPHA/F.
11-20 PNA E10.0
21-30 PNALF E10.0 PNK. Fresnel number,: WN'WIDTH2/F.
31-40 PNK E10.0 ~
41-50 PNO E10.0 PNO. Overlap number, 24/2* WIDTH/(VO *HT)
51-60 PNS E10.0 for an infinite and truncated Gaussian beam and
61-70 PND E10.0 2+ WIDTH/(VO - HT) for all other beam shapes.
71-80 PNZ E10.0

PNS. Slew number, OM*F/VO.
PND. Distortion number, 8Nk(y - 1)afEp/c2a voAt.

PNZ. The ratio of the distance at which the calculation is to be stopped to the focal
length, ZF/F.

Examples of Output

A series of multipulse runs was made varying the pulse spacing and energy so that
the average power remained constant and using a number of average powers. The results
of these runs are shown in Fig. 2 in the form of power optimization curves. The CW
curve is included so that the convergence of the multipulse curves to the CW curve, as
the limiting case when pulse interval is decreased, can be readily observed.

To test the SSPARAMA code in the CW mode, some comparison runs were made to
check against some results obtained from Jan Herrmann of Lincoln Laboratory, who
studied the propagation of a CW infinite Gaussian with a e™2 diameter of 70 cm. The
absorption coefficient was 0.07 km™1, with no scattering. The laser was twice-diffraction-
limited DF with a wavenumber of 8.5 X 103 cm™l. Two cases were considered at focal
lengths of 2, 5, and 10 km. The first case had a power of 10 MW, a wind speed of 250
m/s, and no slewing. The second case had 2 MW power, a 2-m/s wind, and a 0.02-s71
slew. The results, consisting of the area containing 63% of the focal-plane power and of
the peak intensity are summarized in Table 4. A;e) and I.¢] compare these quantities
with those that would have been obtained if there were no thermal blooming. The results
for these highly bloomed cases agree within about 5% with those of Herrmann.

19
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Fig. 2—SSPARAMA results (F = 1 km, diam = 70.7 cm
(1/e), @ = 0.1 km™1, k = 2966 cm™1, vy = 10 m/s, and

Q=0.1)

4000 8000
P{kW)

12,000
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Table 4—SSPARAMA Results for the Propagation of a CW Infinite Gaussian
With a Wavenumber of 8500 cm™1, an e~2 Diameter of 70 cm, an
Absorption Coefficient of 0.07 km~1, and No Scattering

Focal Area A Relative Area Peak Relative Peak
. Containing Arel ' . Intensity Ie1
Length | 63% of the Relative To Inlte"s]‘(ty Relative To
" Focal-Plane No Thermal peak No Thermal
(km) Power (cm2) Blooming (kW/em=) ; Blooming
First Case: 10 MW Power, 250-m/s Wind, and No Slew
2 57.6 20.3 147 0.0464
5 658 37.0 10.3 0.0251
10 3543 49.8 1.33 0.0184
Second Case: 2 MW Power, 2-m/s Wind, and 0.02-s1 Slew
2 64.8 22.8 26.8 0.0422
5 474 26.6 2.96 0.0359
10 - 2018 28.4 0.495 0.0341 .

Another example of SSPARAMA output is' illustrated in Fig. 8, namely, the final
contour plot for the 5-km run from the first case with 10% contour levels. The com-

plete printed output from SSPARAMA is included in Figs. 4a through 4c.
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Y M
0.0

~58,7

| I I I
-§9,7 -28.9 0.0 28,9 57

X CM

Fig. 3—Contour plot with 10% contour levels for the
5-km run from the first case in Table 4 (PNALF = 0.350,
PNK = 10.400, PNO = 0.002, PNS = 0.000, PND =
80.000)

Figure 4a, the first page of printed output, is almost self-explanatory. Both dimen-
sionless and physical parameters are listed; one is computed from the other, depending on
which was entered. The program options indicate the mode, either CW or MP and the
beamshape etc. The results summary in Fig. 4a includes the final value of the energy
conservation integral, Eq. (2). This quantity, which is ideally equal to 1, gives a quick
check on the validity of the numerical calculations. One factor that limits the accuracy
is the use of a finite mesh size. As this mesh is made finer, the intensity distribution gets
closer to the mesh boundaries, and numerical errors may enter through diffraction and
the use of a discrete Fourier-transform routine as energy is reflected off the boundary.
To avoid this reflection, the outermost boundary of the computational grid is set to zero
and the next outermost boundary is set to one half its value at each z step. Thus the
sum over normalized intensity gives an indication of how much energy was lost due to
boundary-value problems.

The area that is given in Fig. 4a is the area containing exactly 0.63 of the total flux -

obtained by linear interpolation between adjacent flux fractional areas. This area will
include contributions from several peaks as the intensity pattern breaks up under severe
blooming conditions, so its meaning may also require a suitable interpretation of the
intensity contour map. In addition the relative area and maximum intensity are calcu-
lated relative to the focal area and intensity of a vacuum-propagated infinite Gaussian
whose el diameter is equal to the value of WIDTH regardless of the beamshape being
propagated. ’
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*oe MEPHISTO IMPUT LATA eee

DIMENSIENLESS PARAMETERS PHYSICAL PARAMETERS NUMERICAL PARAMETERS
Nz 0,000045 RADIUS(M) = 05248 WX = 0,20
NALF = 0,350 ALPHA(I/KM) s 0,070000 HY = 0,20
AK o 10,4¢ K(i/ch) = 8488763 NX = 64
A a 0,00 v(ngS) . 249 98 NY & A4
NS & 0s00 BMEGALRAD/SECY = U.0000 PHIMXX =1,p00
A s 80,00 ENERGY(XJ) » 10420.69
A2 17000¢ F(KMY w 57000-
. DYISEC) = 1,000600
AUPHAS(L/KM) = 0,000000
PRGGRAM EPTIONS
MEDE tw
BEAVSHAPE INFINITE GAUSSIAN
ADAPTIGN YES N
WALF-STEP INYEGRATIEN YES
PUNCHED CARD ELTPUT Ne
NUMBER BF PLETS 5
LEW LEVEL CONTBLRS ve
RESCALE FINAL CBNYBUR PLOT . .VES

#%¢ RES(LYS eos

THE CALCULATIONS REACHED Z s 5700000 (KM)

THE SUM GVER NORMALIZED INTENSITY 3 4700000
THE NUMBER AF ZaSTEPS = 22

JVERAGE POWER (Kh) EMITTED AT APERTURE & 10420,654
AVERAGE TRANSMITYED POWER (KW) & 7343,339
MAREA (SQCF) CONTAINING 0.63 OF PIWEN = 687,995
A'REL (RELATIVE T® INF, GAUSSIAN) & 36,982
AVERAGE INTENSITY (KW/SGEM) IN THIS AREA = 7,031
PEAK INTENSITY (KW/SOCM) o 10,345
! REL (RELATIVE TQ INF. GAUSSIAN PEAK) w  0,02507

Fig. 4a—First page of the output by SSPARAMA, containing the
input that resulted in Fig. 3 and a summary of the results

‘Figure 4b, the page containing numerical data, begins with a list of internally com-
puted quantities that relate to the problems of air breakdown and ¢-cubed self-blooming.
They are printed only for possible future data analysis. Assuming the breakdown
intensity at 10.6 um is 3 X 108 W/ecm?2 and that this is inversely proportional to wave-
length squared, the following quantities are computed as a function of range: the mini-
mum area required for breakdown, the ratio of this minimum area to the vacuum area,
the maximum pulselength before breakdown occurs, the critical power, the saturation
time, the intensity produced by the critical power propagating in a vacuum, and factors
accounting for turbulence with values of C,2 of 10715 and 10-14. This is followed by an
x and y slice through the aperture to check the initial beamshape.

The quantities, including the values of HZN in z/ka? units, relating to the coordi-
nate system adaption are printed at each z step. The headings D, D1, D2, ALPHAI,
ALPHA2, BETA1, DALPH1, DALPH2, DBET1, and XCEN correspond to D, D1, Da, o1,
ag, B, Aoy, Aag, AB, and X used in the second section of this report. Also included is
EPSMX, the maximum value of the summation given in Eq. (72); PHIMX, the maximum
value of the positive phase change applied to ¥ to obtain ®; and PARM, the number of
pulses, for the MP mode, that occur in’'a computational cell.

Figure 4c, the output data, lists in the top portion the area, flux, the area fraction,
and flux fraction contained within each contour level. From these data the 63% area is
interpolated. This is followed in the middle portion by the z locations of the maximum
of the average and peak intensities, the minimum 63% area, and the minimum z step that
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see NOMERICAL DATA wes

RANGE (KM) AS2(Cv2) . AS2/A2D TP{SEC)H
0.£0500 98,99318 0:16193  5,44399003
58056 1018,03493 2,10781 5,09172004
1,11614  1395,21180 s 277194 3,57384004
©1,67467 16%8,41934 gosas 2.99¢70004
evz2722  1859,2353p 9,84094  2,9835.004
2,78278  2018,48219 16,51645  2,1981{5004
3,23833 2447 25482 30159665 ,9878,004
3,65389  2252,39000 67,41011  1,8224400¢
4,44944 2338059222 196731625 188244004
5,00500 2408,90687 424,44483  1,2765,004
NORMAL1Z2EL AMPLITUDE SAMPLES AT ABERTURE
AT %3 32 Ys 3 TO g4
0,0 6.0 6,0 €,0 0,0 0,0 0,0 0,0 0,0 0,0 9;0 0,0 0,8 0,0 0.0
0,6 0,5 0,5 ¢4 0,4 0,3 0,2 0,2 6.t 0,1 0,1 0,0 0,0 0,0 0.0
AT Y2 32 Xxs & 7D &4
GeD 0,0 0.0 €,0 0.0 0,0 030 0,0 0,0 050 0,0 030 0,0 0.8 0.0
046 045 0.5 Cs4 0.4 0,3 0,2 042 0.1 0,14 0.3 0,0 0,0 0,0 0,0
z #2 D £y ALPHAL ALPHAZ  BETAL
0,224 2,2#0¢3 0,9124 0,9924 0,9124 479649 »4,9048 075000
0,442 425003 0,8311 0,831 0,8339 44,7380 +4,3769 4033692
u.gs: .1-0:; n.zgsg 0.7553 0,7685 -l,ségg -0 ggee N szs;
0,86 0»0c3 n,6049 0,684 0,704 24,2 »3,8230 40,771
1,068 4:o-nc3 0,6189 09,6190 0,458 240719 2315(31 51! po4d
1,271 3 9.u;s 09,5370 0,5%74 0,593 §3;852% «3,1833 4132258
1,401 3.50005 Dia0aR 0:3996 0:303) 1Sieshy -2:de07 aiiils; §
1,672 3,94003 0,4441 0.4456 08081 43,4098 #2,5397 (134325
1,872 3,900¢3 0,3927 0,3951 04783 43,1748 «2; 1258 41%ay80
2,073 3,8+003 0,3442 0,348% 0,4436 42,9360 =1,8830 4170947
2!277 3'900e3 2986 o 3p48 04193 NI T T 1 I ‘1515
2,484 4, 040C3 0,25%4 0,2644 0,4p06 2;4240 =1,4239 .2 3
21656 41gnac3 01219 60,2281 0.3886 92’1443 ki ; 184
912 4.470c3 0,177% 0,1961 0,384 71,8449 o0, 265 4
§.048 3003 03428 0:1080 395 TN o 1] ??
3,367 4,40003 08,1300 0,1473 0,4084 51,1654 209 .3 1616
31650 ¢16e003 010821 0.1321 0i4412 wg 779 9 .3‘5546
3,869 4,8-003 0,0567 0,1239 0,491 #0,399¢ z 5771 16476
40142 3)¢egcd 0,0358 011220 05595 3or0769 83863 A
4,431 5,4-002 0,0202 0,1258 ¢ 6484 071B31  4,1%40 571423
41740 5'7.0¢2 0)0140 o:isaz 07652 0,4112 9125 3i7477
5,000 e.g-uca 0,0092 0,147% 076477 5, 7!17 .6 13666

have occurred during beam propagation. Then in the lower portion the peak and average

0,8731

PCR(H)
1104294005
5,12764005
e 157744005

.6732°oos
8,69914005
9,4546¢005
1,0243¢006
1,0994+006
2,17204006
1,2428+006

DALPHL

0,0004
0,0009
0, oos:
0,0049
0.,008¢
06,0136
0,0204
0,029%
0,04;4
0,0572
9,078g
67
o 1 H

zﬁ
o 3250
0,3473
06,3004
012350

0,1912
o, '1636

0,1158

1SAT(ISEC)
5,448300%
2,5054#005%
2,255%+00%

2,1293003
sl 9;' 0

2,0497.005
1,9943¢005
i, 19838005
i, 9227-005
1, 898!.005
1,8807000%

DBETL

3 np,3
-0.‘370
«0.%0%
0, 5920
w0, 6258
«0,5733
.0 477

13554
-n 2570~

-8,2020
eD,2833
»0, 2839
»0,2851
w0, 287

9 -9, .36084
-0.0030-11 3604

1SAT (W/nM2) TURRCARY
4,0712¢004  1.0000¢000
2,43704002 9.9957»001
3,92614002  9,9961w001
5,98954002  9,9805e004
9,2798.002  9,9301%004
1,92004003  §,7823%001
2,75844003  9,3%1%2001
5,98114003 8,8745.001
1, 72n2ooo4 4,9384,0p4
3,6826.004 2,4i8%.009
0,14-0,1 0,1 0,2 0,2 0.3
0,0 0,0 0,0 0,0 0,0 0.0
0.1 0.1 0,1 0,2 0,2 0.3
0.0-0.0 0.0 0,0 0.0 0,0
XCEN  EPSMX  PHIMX
0.6000 5.5«004 19,0000
»0,0306 5,24004 ,4949
«0,0920 5 0=004 01,4935
f,4949
0,49n3
,4885

»4,7020
53,4128
v6.2478 4.6u004

©7.6632 1,50004
1:.5%004

Se004
1Y)

1,70004

13,6639
15, 7174

Fig. 4b—Second page of the output, containing numerical data

-

TURBFOR2
1400004000
9.99474001
9,9378.001
9,6992-001
8,9967.00¢
7 3629,004

o

'7959:gg§
1,9731.002

PARN

2, 200004
139.004
ALy
n

$:62004
1‘6 004
1,5-004
i, L4e004
i, 3-0n4
4,2.004
112.004
1.1-004
i, 0=004
9 S«005

B.on

8,10005
7 6-on!
7.2=00%
7 o=0n%
6, 19=005
7! L0005
7.3-005

intensities, the 63% area and the location of the peak intensity in centlmeters are listed

at each z step

Summary of Program Sti'ucture

When the half-step integrations are used, the solution is advanced twice before the
information at each z step is stored. This can be seen from the flow chart of
SSPARAMA (Fig.'5). Thus, when NMS = 1, the program actually used twice the number
of z steps that are printed and included points approximately mldway between those

listed.

The structure of the code SSPARAMA is explained below and summarized in the
flow chart in Fig. 5.

® The call to subroutine START causes the ihput data to be read. The real part of
the 64-by-64 array Y is defined according to the beamshape specified. Initially the phase
of this array is zero.
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ese GUTPUT DATA ase

AREA PLUX AREA FLUX {RRADIANCE

LEVEL (30_cM) (KK FRACTIEON FRACTION  IKW/80-CM)

0:9000  B8778ien0y  B,8154002  0,0556 0,2173 9,8141ep00
0,8000 §37564002 ¢,6303003 0,1111 0,2219 ©,2804000
0,7000 2;634s002  2,3204003 0,1667 0,3159 8,8084000

0,6000 4;039¢002 3,2744003 00,2558 0,4458 8,10%+000
0,5000 8370%¢002  4,2813003 0,3667 0,583 9:333.380
0,4000 772004002 4,9154003  0,4556 0,6693 6,8264000
0,3000 9:483+002 9,7%543003 0,8000 0,7836 6,0674000
0,2000 ;:;7Z~oo§ :.:?3+nos 0,7444 0,861 S, 3744000
0,1000 +38i+00 19904003  1,0000 0,9438 4,38%6000
0:5300 tiazaegos 701283003  1.15%8 0,9704 s:Oo;.ggo
MAXIMUM AVG ! = 1,873+001 AT Zs 3,36%+000
MAXTMUM PEAK Ia 3,8614001 AT Z3 3,81pe008
MINIMUM AREA = 2,7414002 AT Zn §,6104000
MINIMUM K2 s 2,170-003 AT 2s {,008e006
z TAVE i63 IMAYX XPEAK YPEAK
o,dof 5,308 0,004 0,000
0,224 5,719 0,008 0,000
0,448 6,152 0,000 0,000
0,658 6,608 0,004 0,000
0,868 7,083 0,000 4,143
1,088 7,570 0,000 3,972
1,271 8,060 0,000 3,812
1,478 i 8,533 0,000 3,864
1,872 6,274 930,908 9,217 »3,304 3,523
1,872 6,791 848933 9,930 3,132 0,000
2,873 7,430 T8437166 10,776 5,047 3,297
2,277 8,260 6777725 12,064 5,464 37208
2,482 9,320 9179084 13,519 27,636 3,133
2,658 10,784 5037944 16,524 7,092 S,086
2,912 12,922 43147367 20,387 6,576 8,140
31934 15,727 33si3gp 25,611 <6,108 a:iaa
3,387 18,727 2767968 32,220 5,700 4,327
3,810 18,604 2747121 36,413 «5,398 6,576
3,869 15,%99 3215008 33,563 »5,227 3,469
4,142 12,970 3787764 21,360 ad 458 3,703
4,438 10,239 4707186 16,150 5,267 0,000
4,748 8,277 8697200 12,452 «3, 460 0,000
5,000 7,031 6377995 10,345 5,498 0,000

Fig. 4c—Third page of the output, containing the
remaining numerical data

® The initialization procedure continues with the call to INTENS, where the
aperture intensity is computed at each mesh point.

® The call to DENS computes the quantity g(x, y, 2) given in Eq. (63) and then
applies the phase change given by Eq. (62) which converts ¢ to &, The first z increment
is also computed.

® The main program loop begins here with a call to OUTPUT to store various
values until the calculations are completed.

® The call to ADVANCE applies the Fourier transform of Eq. (67) and then the
phase change of Eq. (68). The array is Fourier-transformed back to yield ®(z + Az).

® The intensity is computed with the call to INTENS, and the boundary values of
the array are tapered to zero.

® The call to DENS now includes a call to VTRANS, by which the phase change
of Eq. (62) is reversed, converting ® back to Y. The quantities {oy, a2, f} and
{Aaq, Aag, AB} are found in VTRANS, and the values of Dy and Dy are updated.
After the return to DENS, Eq. (63) is solved and the phase change of Eq. (62) is reap-
plied, converting ¥ back to ® in preparation for the next call to ADVANCE.
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|

CALL START

® READ INPUT CARDS
® DEFINE ¥
® INITIALIZE CONSTANTS

CALL ADVANCE

® CHANGE &, TO K SPACE
e ADVANCE &,
® BACK TO REAL SPACE

Y

4

CALL INTENS
® APERTURE INTENSITY

CALL INTENS
& GET INTENSITY

#

-

CALL DENS

® MP SUMMATION
® FIND INITIAL Z INCREMENT
® PHASE CHANGE ¥~ &

—
CALL DENS
CALL VTRANS
® MP SUMMATION
® Z INCREMENT & oy >y
°Vv,>d, o ADAPTION

»

CALL OUTPUT
® STORE CURRENT VALUES

DID
THE LAST Z
STEP TAKE LESS THAN
3 TIMES THE TIME
REMAINING?

CALL ADVANCE
® ADVANCE &,
¥
CALL INTENS ]
¥
CALL DENS —
® Z INCREMENT CALL VTRANS
* ¥, ~>®, ® H,> T,
e ADAPTION
YES
NO
CALL OUTPUT

® PRINT RESULTS
® DRAW GRAPHS

Fig. 5—Summary of the code SSPARAMA
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® Now that one cycle of propagating the solution is completed, the code checks if
z final has beén reached and if the half-step mtegratlons are to be performed as outlined
in the section titled Numerical Procedures.

® When z final has been reached or the time limit of execution is near, the last
call to OUTPUT prints the results and ends this run.

The Appendix contains a complete listing of the code with copious comments
included.
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APPENDIX A
Listing of Code and Comments

PROGRAM SSPARAMA :
AR R R EE RN T I N N N N T A

COMMON /999/ Al(64+64)s A2(64964)y ITENS(64+64)

L A R I

COMMON /AAA/ EPS{64364) sEPSO(64964) 9sA0UT(1199)sBOUTIY9910)

e AIN(2364)9sDALPHL(2)sDALPH2(2) 93BETI(2) »ALPHL0(2) sALPH20(2) )

. BET1D(2)s D1G(2)y D20(2)s RD1VD(2)s RD20(2) s SRTD10(2)s XCEND(2)
COMMON /BBB/ TENS(64s64)s G1164)s G2(64)s PHASEL(64)s PHASEZ(64))

e CONMIN{IU)9M2(3)95V1(64)95V2{64)sPARMIEC)
COMMON /SINGLS/ Fs PNAs PMALFs PNKs PNOs PNSs PNDs PNZs

HXs HY»

HZs Z9 22+22Fs ZNMs ZFINALs XZEROs YZERQO» WIDTHe ALPHA3S WN»

VODTs OMDTs HTs ENERGYs ALPHACs CSs REFRACY GAMMAY Eicy CTK»

EJTKJs RHTs POUTs DAREA, %29 TSe TPULSEs AS29PCRISIsTCOR1STCOR2Y

Z1ls RIG3MXs Z2s RIMXMXs 235 APMNs Z4s HZMNs DKAREAs TENSMXs

EXs PHIMXy EPSMXs ERRMXs DGMXs R1ls BDIMAXs VTERMs PHIMXXSHZNMS» 14
PIs IMAXs JMAXs NXs NYs NADs MX2s NY2s NXYs NXDIMy NYDIM»> NPT

IPLOT o NITERsNBUF g NXM g NYMaNMS oNFLAGD D1 9sD2sP1sP29SRTD1sSRTDZ
RSRD12sXCENSTLAST s SURT89PNIIO s GLONO s GCONsED I s HCZ1C 9 HCZ205HCZIN
HCZ2NsHCZ129ALPH1 s ALPH2 sBET1sCONLsCON2 s HZOsHZNSEXOsEXNs T 1awT2

COMMON /0UTS/ NBMsSCLFACINKSsNPAaNCW s NEXTT 9NPLOT 9 NPUNCH
CH % % % % % F % R 8 ¥ X % O ¥ o R o R O % 3 ¥ # ¥ % ¥ % ¥ ¥
COMPLEX Als A2
LOGICAL LS

* KO ¥ 3¢

DATA (CS5=34000ei) s (REFRAC=04154) s (GAMMA=144)s (ETJ=1e0E-T7)s

. (CTK=1e"E~5)
DATA (NXDIM=64)s (NYDIM=64)s (NZ=20)
BANK s () 9/969/

C
C INPUT AKND INITIALIZATION
C
TSTART=TIMELEFT (DUIMMY)
LS=eFALSE
55 CONTINUE
CALL STARTI(LS)
NMEXIT=C
NITER=C
IPLOT=:
2L1=Caeb
222=0aelt
12=2
IF (NMS «EQe U) I2=1
C
CALL INTEMS(AlseFALSES)
CALL DENS(Als Als Z2Z1s 1s 1s «FALSES)
HZO=041)
C
C PR R FEE F R R o B AR B8 3 SE 38 JE 36 3 3 6 3L 3L T P R Rt o ok SRk
C
C MATN PRCGRAM LOOP
C
14 CONTINUE
NITER=MITER+1
C .
C STORE VALUFS FOR LATER PRINTOUT
C
2 CALL OUTPUT(«FALSES)
C .
C IF TIME REMAINING IS LESS THAN 3 TIMES THAT FOR Thi LAST
C Z STEP - EXIT
C

27

(P1=361415926%)s (RDI=240F6)s (LJTKJI=10

0FE=3})

3650 KO3R8 362634 56 30 368 S Je e XSSk
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3 TNOW=TIMELEFT (")
DT=TLAST-TNOW
TLAST=TNOW
IF(3#DTelLE«TNOW) GO TO 8
PRINT 2242
22 FORMAT(//25X25H%%% TIME ARORT AT Z(K:!') SFE17e591X30i%%3%/7)
GO TO 13
8 CONTINUE
C
C ADVANCE FROM 2Z TO 722+0DZs CALCULATING NEw A-FLITUUES I A
C
40 CALL ADVMCE(Al91)
CALL INTENS(Als oFALSFS)
CALL DENS(Als A2s ZZ19 1s [2s «TRUES)
"IF (Z «GFe ZFINAL) GO TO 15
c .
C REPEAT IF HALF-STEP INTEGRATICN 1S INCLUUED
C
IF (NMS «EQ. ) GO TO 45
CALL ADVNCE(A242)
CALL INTENS(A2s «FALStS)
CALL DENS(A2s Aly 2225 25 1s «TRUES)
IF (Z «GEe ZFINAL) GO TO 1%
45 CONTINUE
GO TO 14
C ) .
[ R RS b e R L R R R R L L T X R R R O S S R R R R ATV VR R
C
C SET NEXIT EQUAL 1 FOR PREI'ATUKE EXITS
C
13 NEXIT=1
15 CONTINUE
C
C EXECUTE ALL OUTPUT
C
CALL OUTPUT(+TRUF )
PRINT 16
16 FORMAT (1HY)
17 CALL STCPPLOT
C PRINT RUN TIME (CP TIME).

18

WHITNEY, MADER, AND ULRICH

TRUN=(TSTART=TIHMELEFT(LUNNY) ) fbU
PRINT 18, TRUNM
FORMAT (/ /516 (2H*)s%* RUN Tl b=%sF6e29% MINUTESH)

.STOP
END

28
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SUBROUTINE START(LS)
c .
C THIS SUBROUTINE READS THE INPUT PARAMETERS AND DEFINES
C THE APERTURE DISTRIBUTION PSI {OR A)e MANY GQUANTITIES ARE
C INITIALIZED HERE FOR LATER USEe -
C ' :
C********%%*%*****%*****7"{*****%%**%65’%%%*‘2\‘*%\‘{'*%%'}(%**'L"X")('*’,(-***'7('**%%****%*********')(‘*
C
COMMON /9997 Al{64s64) s A2(64s64) s TTENS(HLs64)
COMMON /AAA/Z EPS{6Ls64) sEPSO(6L64) s AQUT(11999) 9B0UT(Ye10) s
e AIN(2564) sDALPHL(2)sDALPHZ(2) s0bET102) sALPHIO(Z2) sALPH23(2)
. BET10(2)s D10(2)y D20(2)s RDLIGI2)y RD20(2) s SRTD1IO(2)s XCEND{(2)
COMMON /BBB/ TENS(64s64)s Gl{64)s G2(64)s PHAASEL(64)s PHASE2(64) s
o CONMINCL1O) oM2(3)9SV1(64)95V2(64) sPARMIEBO)
COMMON /SINGLS/ Fs PMAs PNALFs PMNKs PNOs PNSy PNDs PNZs HXo HYy
. HZs Zs 2292Z2Fs ZNMs» ZFINAL XZEROs» YZEROs WIDTrHs ALPHASs WNs
. VODTs OMDTs HTs ENERGYs ALPHACs CS»s REFRACs GAMMAs ETJs CTK»
e« EJTKJs RHTs POUTs DAREAs %29 TSe TPULSEs AS2sPCR9SIsTCORLIaTCOR2 Y
. Z1ls RIBG3MXse Z2s RIMXMXs Z3s APMMNe Z&4s HZI'Ns DKAREAs TENSMXS
. EXs PHIMXs EPSMXs ERRMXs DGMXs Fls BDIMAXs VTERMs PHIMXXsHZNYMS s 14
. Pls IMAXs JMAXs NXo NYs NADs NX29 NY2s NXYs NXOIMs NYDIMs NPT
. IPLOT[NITtR’NBUF9NXN,NYH9NM59HFLAG$DQDI’D29P19P295RTDIQSRTDZQ
. RSRD12sXCENsTLAST sSWURT8sPNDI o GCGHC sGCUNBO L sriCZ1091C2209HTIZLN»
. HCZ2NsHCZ12 9ALPHI s ALPH2 s 3t T1 s CUNT s CUNZ s HZU s HZN yEXCoEXN 9w T1 9w T2
COMMON ZQUTS/ NBMeSCLFACoNRS 9P o NCH o NEXTT oMPLOT o NPUNCH
COMMON/PUN/NMNTID
R L R R S S e R R R LR L e e R L R L R S as
¢ )
COMPLEX Als A2
LOGICAL LS LPs LT
DIAENSTION IPWR{64)
DIMENSICON PHBUF(512)s PVI64)
C
C INPUT AN IMITIALIZATION
C
DTURBF(DUMY )= { 1eu=2Ri ) %% 24+ { (2N /PR %82 )% (] aC+1 03335543538 DTH*
. WIDTH®CTK® L (P I#* 2 D0 Y Hy 8w R0 SFR40G a1 )W % (Ha/Da) ) )
CALL PLOTS (PREUF9512s1)
SCLFAC=1"el:

a¥aXalalaNalalatelanakaiaiakeiaiakakalaXakaNaNaNea e

1F

FRERRFE N

READ

nNCW
N
MAD
MMS
NPM
NPHM
NBM
NEM
NBM
NBM

W Hnnwer-onnoan

NPLOT
NPLOT
NPLOT
NPLOT

NCT =
NCT
NRS =

p=4

(LS} GO TO 3

e HeF 3R K Sk R R e

3RS 0 N AT A K

INPUT DATA - PROGRAII GPTICMS

} - MULTIPULSE “ODE
- ¢ MODE
- NO ADAPTION
- NO HALF STEP INTEGRATIONMS
T & = READ IN PIMENSIONLESS PARANMETERS
T & = READ IN PHYSICAL PARAMETERS
- INFINITE GAUSSIAN
- TRUNCATED GAUSSIAN
- UNIFORM CIRCLE
- UNIFORM SQUARE
- UNIFURIY CIRCLE WITH ROCULT OCCULTED RADIUS
0 - NG PLOTS
1 - FIRAL CONTOUR PLOT GNLY
2 - ABOVE + 1 VS Z PLOT ‘
3 - ABOVE + FLUX AND AREA VS TRRADIANCL
4
5

-~
oo

- ABOVE + APERTURE CCNTOUR PLOT
— ABOVE + FOUKIER TRANSFCRM CORTOGUR FLOT UF APERTURE
AND FOCUS
i = 10 PERCENT CONTOUR LEVELS
E @ = LOW CONTOUR LEVEL CPTIOCN
C -~ DO NUT RESCALE FINAL COMTOUR PLOT

29
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WHITNEY, MADER, AND ULRICH

NPUNCH = U = NO PUNCHED OUTPUT
NID IS AN ID NUMBER READ IN A6 FORMAT

FOR GAUSSIANS = WIDTH = 1/E INTENSITY RADIUS )
FOR UNIFORM APERTURES - WIDTH = RADIUS OR HALF SICE DIMENSION

READ 19 PHIMXXosROCULT sHXY sNXY sNCW sNAD sNMS o NPM o NBHaNPLUT
NCTsNRSsNPUNCHyNID

FORMAT(3F5e0s101599%X9A6)

HX=HXY

HY=HXY

NX=NXY

NY=NXY :

IF (NXeGTeNXDIM) NX=NXDIM

IF (NYeGTeNYDIM) NY=NYDIM

IF (NPMeLTeO) GC TO 23

READ IN DIMENSIONLESS PARAMETLRS

F=FQCAL LENGTH IN XM

HT=PULSE INTEVAL IN SEC { =1 SEC FOR Cw)
PNA=WIDTH (1/E INTENSITY RADIUS)/F
PNALF = ALPHA/F

PNK = K % A¥%2 / F

PNO = 2 % A / (V DT) { DT = 1 SEC FOR Cw )

PNS = QOMEGA # F / VvV .

PND = E # K % ALPHA 3R (GAMNA=1)/{V % DT # A % CS¥%2}
PNZ = 7 FINAL 7/ F (FOR DEFCCUSEY CASES)

READ 2Uy FoHTs PMNAs PHALFs Pir.Ks PHOy FNSs PHNDs PNZ
FORMAT(2F5el*s 7TELiral)) .
F=F%1esE+5

WIDTH=PNARE

ALPHA=PNALF/F
ALPHAS=G 40

WN=PNK/ (F#PHMA®PNA)

VODT=2« %W IDTH/PRG

CMOT=2 FPHSEIDTH/Z (F#DPANG)
VO=VCORT Z7HT
OMN=CVDT/ZHT
ERNFFLD=CS*CS*WIDTH/ IREFRAC*3 e J% (GANIMA~]1 (V) )
PNDG=2 o OEPNDRPNAZ (PRORFENKEPNALE)

GCON 1=PNODSPIHALF#P, KN A
ENEFRGYSPNDCHCNFFLLDS W TOTh*WIL TrH*ETY

ZF=F#ppN7
GO TC 26

\

IF (NPMeGTe) GU TO 26

CAD IN PHYSTCAL PARAMETERS

OM= OMEGA IN RADIAMS/SEC

HT = PULSE INTERVAL IN SFCONDS
ALPHA= ARSORPTION IN 1/KM/

ALPHAS= SCATTERING IM 1/KM

WIDTH = 1/E INTENSITY KRADIUS IN CH
WN = 2 % PI / LAMBDA IN 1/CH

VO= WIND SPEED IN #M/SEC

ENERGY = ENERGY IN JOULES

F=FOCAL LENGTH IN K&

ZF= 2 FINAL IN KM

READ 24 90OMoHT s ALPHAZALPHAS s L Thia N eV aENERGY oF 921
FORMAT(4F5etiabEL1"an)
VO=VI¥1ale
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F=F#1eE+5
ZF=ZF%14E+5
ALPHA=ALPHA*14E~5
ALPHAS=ALPHAS*14E=5
VODT=VO*HT
OMDT=0OM*HT
PNA=WIDTH/F
PNALF={ALPHA+ALPHAS ) %F
PNK=WN*WIDTH*%*2/F
PNO=24 O¥WIDTH/VODT
PNS=OMDT*F /VOOT
ENFFLD CS*CSH¥WIDTH/ (RFFRAC#3 4 0% {GAMMA=1401) )
O=ENERGY/ (ENFFLD*WIDTH*%*2%ETJ)

GCUN( 3« #REFRACH { GAMMA=Y o ) ¥WN* % 2% ENERGY*ALPHA* 1 o E+7/(CS*CS)

PND=3 e #*REFRACHKWN# ( GAMMA~1 )} ¥ALPHA*F*EMERGY#*# 1 et +7/

1{CS*CS*WIDTH*VEDT)
PNZ=ZF /F
26 IF(NCWeEQel) HT=1.

C .
R L R R R R T Lo S L R R R Y R R R X SRRy
C
C PRINT INPUT PARAMETERS
C
30 CONTINUE
PE=ENERGY/1Ulilje
PVU=V. /100
PALFS=ALPHAS¥*1ES
PALF=ALPHA%*14ES
PW=WIDTH/100.
PF=F/1«E5
C

PRINT 434NIDs
42 FORMATITIOX A6/ /)
PRINT &4y
44 FORMAT(3CX2TH*%% MEPHISTO IMPUT DATA #x%///
1ISX#DIHMENSIONLEFSS PARAMETERS® 96X 9 ¥PrIYSICAL PARAN
29 XENUMERTICAL PARAM[ITERSH*/)
PRINT 1.:7ts PHRAyPY 9oHX
IPNALF 9sPALF oMY s
ZPN(QWN9NX’
3PNOSPVUIMY
GPNS $ Oy
5PNDPES
6PMNZ 4PF
THT »
8PALFS

ETERS*

100 FORMAT({I0OX4HNA =F1U469 IN0XTIHRADTHS(M) =F10e3 9 10X4MHX =F542s/
18X6HNALF =F1Ce3s BX13HALPHA(L/K A} =F1C. 691JXQHHY ”F).Za/

21CX4HRK =F1lCe2512X9HK(1/CH) =F1. e¢2910X4hNX =15
B3LUX4HNO =F1lCe2913X8HVIF/S) =F10e29LOXGHNY =15 9/
GLOXGHNS =Flue2s 5X16HOMEGAIRAD/SFC) =F10e4/
S51CXGHND =F1Ge2s. 9X12HENERKOY (K JI) =F10429/
61IXGHNZ =F 104 s L4XTHF(KM) =F10e34/
T36XOhDTISEC) =F1leby/
B831X14HALPHAS(1/KM) =F1lebs//)
PRINT 147
147 FORMAT (5X*¥PROGRAM NPTIOMNSH/)
IF (NCWeEQel) PRINT 166
IF (NCWaFQel) PRINT 167
166 FORMAT ( 25X4HMODES X2HMP )
167 FORMAT (25X4HMODES X2HCY )
IF (NbMeEQeO) PRIMT 148
IF (NUEMaEQel) PRIMNT 149
IF (NBMeEQe2) PRINT 150G
IF (NBMeEQe3) PRINT 151
IF (NBMeEQe&4) PRINT 168,kOCULT

31
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IF (NAD.EQeO) PRINT 152
IF (NADWEQel) PRINT 153
IF (NMS.EQeC) PRINT 154
IF (NMSeEQel) PRINT 155
IF (NPUNCHsEQsCG) PRINT 156
IF {NPUNCHeEQel) PRINT 157
.PRINT 158s NPLOT
IF (NCT+EQeO) PRINT 162
IF (NCTeNESC) PRINT 163
IF (NRS.EQeC) PRINT 164
IF (NRSeNE«O) PRINT 165
148 FORMAT(20X9HREAMSHAPESX* INFINITE GAUSSIAN#)
149 FORMAT { 20X9HREAMSHAPESX*TRUNCATED GAUSSIAN#*)
150 FORMAT ({20X9HEEAMSHAPESX*UNIFORM CIRCLE#*)
151 FORMAT (20X9HBEANSHAPESX¥UNIFORM SQUARE#)
152 FORMAT (21X8HADAPTIONSX2HNO)
153 FORMAT(21X8HADAPTIONSX3HYES)
154 FORMAT (BX21HHALF-STEP INTEGRATIUNSX2HNO)
155 FORMAT(B8X21HHALF~-STEP INTEGRATIUNSX3HYES)
156 FORMAT{10X19HPUNCHEL CARD QUTPUTSXZHNO)
157 FORMAT (10X19HPUNCHED CARD OUTPUTSX3HYES)
158 FORMAT(14X15HNUMBER OF PLCTS5XI13)
162 FORMAT(11X18HLOW LEVEL CONTOURSSX2HNO)
163 FORMAT (11X18HLOW LEVEL CONTOURSSLX3BHYES)
164 FORMAT(3X26HRESCALE FINAL CUNTOUR PLOTS5X2HNO)
165 FORMAT(3X26HRESCALE FINAL COMTOUR PLOTHX3HYES)
168 FORMAT (20XIHBEAMSHAPESX#UNIFORM CIRCLE — OCCULTED RADIUS =#F542)
g*******%*%*%***%*%*****%*%****%*%%**a*****%***%*%%%***%%*****%%*x%***%*%#******
C
C NEFINE AND STORE COMPARATIVE PHYSICAL DATA
C .
Cl3=1e0/3e0
W2=WIDTH*WIDTH
WL={(2eu#PI/vN)#lalF 4
BDI=5DI#(10s6/1L) ¥%2
RHT=1eu/HT
POUT=ENFRGY#RHT*EJTKJ
DAREA=HX*HY
CAS=SQRT(ALPHARF#F#ENERCY#* %3/ (Qa i =6% (P IFW]IDTr*-D1)%%2))
CTP=34wE~3%SQRT( W2/ (ALPHA#*F#F %} MERGY)) -
CPCR=(30F=8*¥BOTIHHDI/{{GAN 1A= 1« Q) HFALPHARFXF ) ) ¥ % C13¥RBT*P ¥y 2
ZFINAL=ZF*CTK* 14999999
ZZF=PNZ/PMK
TPULSE=KT
NP=10

DO 54 1I=1sNP
ZNM=FLOAT{I-1)/FLOAT(NP=1)}+1e0f~3
ZETA=ZNM/PNK
2= ZNMEF#CTK
D=ZETA*ZETA+{1le\i=ZNM)#%2
AV=42#D
EX=EXP{~PMALF#ZN*)
SREX=SQRT(EX)
ASL=CASH#ZNM¥SREX*¥#3
AS2=5QRT(AS4)

AR=AS2/AV
PCR=CPCR*¥AS4**C13/EX
TP=CTP#AS2/{SREX#ZN!"+1.0E-60)
TPULSE=AMINL(TPULSEs TP)
TS=PCR*TP/POUT
SI=0e75%#PCR¥EX/(PI#AV)

IF (Z oNEs Ueu) GO TO 10
TCOR1=140

TCOR2=1.4
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GO TO 12
10 DTURB1=DTURBF(140E~15)
TCOR1=D/DTURB1
DTURB2=DTURBF (1+s0E~14)
TCOR2=D/DTURB2
12 CONTINUE
BOUT(1s1})=2
BOUT(2s1)=AS2
BOUT(35s1)=AR
BOUT(&4,1)=TP
BOUT(5+1)=PCR
BOUT(651)1=TS
BOUT(751)=5I
BOUT(851)=TCOR1
BOUT(9,1)=TCOR2
CONTINUE

w
ha

LT TR PR LR LR L RE L LR EEEIEEEL LT LR EEEEEEEEEETLREEEIELLEELEIEEETIEE LS LE LS LT L L L

NEFINE INITIAL AMPLITUDES AT APERTURE

TRUNCATED OR INFINITE GAUSSIAN
UNIFORM CIRCLE OR SQUARE

TRUNCATED GAUSSIAN IS TRUNCATLD AT 1/b INTENSITY RADIUS
OR R{TRUNe)=1e414%A

[aNea¥aXalaNaaXaRaYaNa

XZERQ=—(NX~1)¥HX/ 2
YZERQO==(NY=-1)%#HY/2e
NXM=NX=1

NYM=NY=-1
DKAREA=MX*NY#DARFA
DO 64 J=1,sNY
Y=(J=~1)#HY +YZERO
G2(J)=1,0=Y*Y
DO 64 I=1sNX
X=(1~1)#¥HX+XZERO

IF (J oEQs 1) G1(I)=1el—-X%X
SSQ=XEX4+YRY

NDEFINE GAUSSIAN AMPLITUDE

[aNaRal

IF (NBMeGFe2) GO TO 3050
REAL=EXP(-Ce5%55Q)

IF (NEMeEQeleANDeSSGeGTe240) REAL=CW0

GO TO 35C i

NEFINE UNIFORM CIRCLE AMPLITUNE

wOON

306 IF (NBMeGTe2) GG TO 210
REAL=1.u

IF (SSQeGTele(') REAL=:1el}
GO TO 350

NEFINE SQUARF APERTURFE

10 IF (NBMeGTe3) GO TO 320
IF (ABS(X)eLEeleila ANDaAFS(Y)eLlieleOeANeNHMebQe3) REAL=14)
IF (ABS{X)aGTeleVsOReABSIY)aGTelsOeAMDWNRMoFUe3) REAL=0e.
GO TO 350

C

C NEFINE OCCULTED UNIFORM CIRCLE

C

320 REAL=1.0

IF (SSQeGTale®) REAL=LUSC
IF (SURT(SSQ) «LEROCULT) REAL=0.C
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C
C LOAD INITIAL ARRAY
C
3

50 CONTINUE
Al(I9J)=CMPLX{(REAL040)

64 CONTINUE
C
C FIND NORMALIZATION FACTOR
C

CALL INTENS(Als - «FALSES)
RNORM=040
DO 66 J=1sNY
DO 66 I=15NX
RNORM=RNORM+TENS (I +J)
66 CONTINUE
RRNORM=1+0/SQPT (RNORM#*DAREA}
C ,
A2ty Ty T s e Ty ST g e R T T T e T L T
c k
c INITIALIZE CONSTANTS AND PARAMETERS USED LATER IN PROGRAM
C
NBUF =2#NXDIN#NY
NXY=2#NXDIMENYDIM

NY2=NY/2
PVITI)=240%PI*(I~1)/(MNX*HX)

ILO=NX2+1
DO 70 I=IL0OsNX
. PVIT)=20%PI*(I=1~NX)/ (NX¥*HX)
70 PVIT)Y=Pv(1)*PV(])
DO 72 J=1sMY
PHASE2(J)=0e5%PV(J)
DO 72 I=1sNX

C
C NORMALIZE AMPLITUNES IN THIS LOGP

ALCT9d) =RRMNGRMIEAL(T 9 )

A2(T9J)=A1{T4J)

EPS{Isd)=i el

IF (J «FQe 1) PHASEL(I)=0e5¥PV(])
72 CONTINUE

DO 74 J=14NY
74 EPSO(19J)=Cari
C
C STORE X AMD Y SLICES AT APERTURE
C

IPX=NX/2

IPY=NY/2

DO 42 I=1s64
AIN(1sI)=A1(IPXsl}
42C AIN(291)=A1(1,IPY)

C
RI&3MX=0as0
RIMXMX=0e0
APMN=140E10
HZMN=1eOF 10
HZ=0.0
CON1=0e5%(1e9=1e!/SQRT(3.0))
CON2=0e5%(1eU+1e0/SGRT{3.0))
M2(1)=LOGF({1e#NX)/LOGF(2e)+0e5
M2(2)=LOGF (1e*NY) /LOGF({2e)+0 45
M2(3)=0
CALL SETUP ('9M29SV198V2sUsIFERR)
C
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DEFINE CONTOUR LEVELS

IF (NCTeNEsO) GO TO 210
CTLVL=.9

DO 200 1=1,9
CONMIN(I)=CTLVL
CTLVL=CTLVL=e1
CONMIN(10)=0405

GO TO 250
CONMIN(1)=0e50

DO 220 1=2310 .
CONMIN(T)=CONMIN(I~1)%045
CONTINUE
TLAST=TIMELEFT(0)

INITIALIZE PROGRAM PARAMETERS

2=0.0

22=040
HCZIN=U,0
HCZ2N=0,0
INM=0s

D=1,

D2=140
SQRTE=SQRT (Bet )
DO 80 I=1s2
DINDtI)I=1a40

D2011)=1.C
RD10(I)=1e0C
RD2C(1)=140
ALPHIO () == 45%PMNK
ALPH2U (1) ==( o 5*¥PNK
BETIU(I)="el
SRTD1(IY=1e0)
XCENG(I)=Cal:
DALPHI(I)=QaU
DALPH2(I)=Ca0
DBETI(I)=0el
CONTINUE |

SRTD1=1.0
SRTD2=1,.,0
RSRD12=1.0
NFLAG=U .

PLOT IMITIAL INTENSITY DISTRIBUTICGN AT APERTURE

IF (NPLOTWLTe&4) GO TO 260

CALL SYMROL((e0sBatipuelts3HZ =4l els3)

CALL NUMBER(Ge3638evstelbslsBaCstHEBe5)

CALL SYMPOL(1e3258eCselbsttH KM 30e0s4)

CALL LABEL(0e0s4407

CALL PLOT(2e55italiy=3)

XCENTER=5C

CALL SYMROL (XCENTER 503001l 33 sie0s=1)
XMIN=XZERO*WIDTH

YMIN=YZERQ#WIDTH

CALL TOPOGRAF (TENSsHXDIMsNYDIN sNXsNY sCoels0elUslls10eCs10e0y ITENS
1 XMINSHXs4HF6alo&HX CMa+4 s YMINSHY s4HF 6ol s&HY CMyt)
RETURN

END
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SUBROUTI'NE ADVNCE{AsNS)

AND ADVANCES THE SOLUTION BY APPLYING THE PHASE CHANGE

AND THEN TRANSFORMS BACK TO REAL SPACE

NN NANNANNON

THIS SUBROUTINE FOURIER TRANSFORMS PHI(XsYsZ) TO PHI(K1sK2sZ)»

PHI{K13sK2sZ+HZ)=PHI{K19K2sZ)¥EXP (Co5*I# (K1 H¥*¥2¥HZ/D1+K2#%2+4,5/D2))

HO% H H R ¥ F X N RO % K % H O % X ¥ OF % K K F ¥ F F F X # # H ¥ %

COMMON /AAA/ EPS(64+64)9sEPSO(64964)9sA0UT(11999)sBOUT(S9410)

COMMON /BBB/ TENS(64364)s G1(64)s G2(64)s PHASEL(64) )
CONMIN(10) sM2(3) 9SV1(64)9SV2(64) sPARMIEC)

AIN(2+664) 9DALPH1(2) sDALPH2(2) sDBET1(2) sALPH10(2)»ALPH20(2) >
BET10(2)s D10(2)s D20(2}s RD10O(2)s RD20(2)s SRTD10(2)s XCENOI(2)

PHASE2(64)

COMMON /SINGLS/ F» PNAs PNALFs PNKs PNOs PNSs PNDs PNZs HX»s HYs

Zls RI63MXs Z2s RIMXMXs Z23s APMNs Z4s HZMNs DKAREA,

HZs Z9 ZZ9ZZFs ZNMs ZFINALs XZEROs YZEROs WIDTHs ALPHAs WN»
vODTs OMDTs HTs ENERGYs ALPHAC, CSs REFRACs GAMMAy ETJs CTK,
EJTKJs RHTs POUTs DAREAs W29 TSy TPULSEs» AS29PCRsSIsTCOR1sTCOR2y

TENSMX s

EXs PHIMXs EPSMXs ERRMXs DGMXs R1ls BDIMAXs VTERMy PHIMXXsHZNMS)
PIs IMAXs JMAXs NXs NYs NADs NX29 NY2s NXYs NXDIMs NYDIMs NPT

C#*

¥ e & & & 0 o 0 & o

IPLOTsNITER sNBUF o NXMsNYMoNMSsNFLAGSD9sD1sD29P1sP2sSRTD19SRTDZ s
RSRD129sXCENsTLASTsSQRTB8sPNDOsGCONO sGCON s BDI sHCZ109HCZ205HCZ1IN

HCZ2NsHCZ12 s ALPHI s ALPH2 sEET1sCONLyCONZ29HZO$HZNIEXOIEXN W T1 T2

% F 3 3 3 3 F F O ¥ XK H R F O H # % ¥ OH K K OB ¥ ¥ K OF ¥ ¥

COMPLEX A(64464)
C NEFINE PARAMETEQS FOR PHASE TRANSFORMATION

HZ1=CON1#*HZN

HZ2=CON2*HZN

ZD11=(HZ1+HZO)*RD1C(NS)

ZD12={(HZ2+HZO)*RD1:(NS)

Z2D21=(HZ1+HZO0)¥RD2"(NS)

ZD22=(HZ2+HZO)*RD2O(NS)

D11=DININSY®* ((1e04+2eUHALPHIT(NS)I® ZD11)#%24ZD11%2D11)
D12=DJUINS)* ((1eU+2eCHALPHIWINS)* Z[212)##2+2D12%2D12)
D21=D2CINSY* ((1el42eO#ALPH2U(NS)® ZD21)%%2+2D21%2D21)
D22=D20L(NS)* ({1eU+2eCXALPH2U(ME)* ZD22)%#24222%2D22)
RD11=140/D11

RD12=1«0/N12

RD21=1.0/N21

RD22=10/D22

HCZIN=0aS5#HZN®*(RD11+R(X12)

HCZ2MN=CaS¥HZN* (RD21+RD22)

RSRDS1=SQRT(RD11*RD21)

RSRDS2=SCRT(RD12%*RD22)

HCZ12=U o 5#HZN*# (RSRNSI+RSRDS2)

C

C WHEN NMS=U, P2=0

C
WT1=P2%(HCZ12-HZ1#RSRLS1-HZ2%¥RSRDS2)
WT2=HCZ12=%T1

C

C RESORT ARRAY IF MX LT 64

¢ .

IF (NX oEQe NXDIM) GO TO 1155
DO 115 J=1sMNY
DO 115 I=1sNX
115 ALT+(J=1)%NX)=A(19J)
1155 CONTINUFE
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PERFORM FOURIER TRANSFORM ~ TO K-=SPACE

CALL FASTFOUR(A(191)s M2y SV1s SV2s =1y IFEKR)
IF (NX oLTe NXDIM) GO TO 10

PLOT FOURIER TRANSFORM OF INTENSITY DISTRIBUTIONS AT
APERTURE AND Z~FINAL

IF (NITER «EQe 1 «ANDs NS «£EQe 1) CALL INTENS(A» «TRUES)
IF (ZZ+HZN+HZNMSeEQeZZF) CALL INTENS(AseTRUES)
CONTINUE

APPLY PHASE CHANGE TO ADVANCE THE CALCULATIONS

DO 12 J=1.NY
DO 12 I=14NX

JT=(J=-1)*NX+I

PHI=P1% ({HCZ10+HCZ1IN)*PHASEY1 ([} +(HCZ20+HCZ2N) #PHASE2(J))
ALITI=ALJIT ) *CMPLX (COS{PHI) s=SIN(PHI))

PERFORM FOURIER TRANSFORM - TO REAL~SPACE

CALL FASTFOURIA(1s1)s M2y SV1s SV2s 1s IFERR)
RESORT ARRAY IF NX LT 64

IF (NX +EQe NXDIM) GO TO 1165

DO 116 J=1aNY

DO 116 I=1sNX
AlTsJ)=ALI+(J=1)%NX)

1168 RETURN

END
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SUBROUTINE DENS{As Bs ZCOORD»s ND1s ND2s LD)
THIS SUBROUTINE APPLYS THE PHASE CHANGE

(1-X%%#2)/D1+(1=-Y#%2)/D2-3N{GAMMA~] ) ¥K# % 2¥E /CS*#2/SQRT(D1*D2) %
SUMIPHI(X~=XPoYsZ))%¥2

THIS CONVERTS PSI (OR A) TO PHI

AONONONOON

COMMON /AAA/ EPS(64,64)sEPSO(64s64)9AOUT(11999),BOUT(993”)9

o AIN(2364)sDALPHI(2)sDALPH2(2)oDBETL1(2) sALPHIO(2) sALPH2U (") »

. BET1t(2)s D1G(2)s D20(2)s RDLIC(2)s RD20(2)s SRTD10(2)s XCENC(2)
COMNMON /BBB/ TENS(64+64)s Gl(64)y G2(64) s PHASEL(64)y PHASE2(64)

o CONMINI{10)sM2(3)9SV1(64)+5V2(64)+PARM(BN])

COMMON /SINGLS/ Fs PNAs PMALFs PNKs PNOy PNS» PNDs PNZs HXs HY»
HZs 29 2Z922Fy ZNMy ZFINAL»s XZEROs YZEROs WIDTHs ALPHAs WNy
VCDTs OMDTs HTs ENERGYs ALPHAC, CSs REFRACSs GAMMASs ETJs CTKo

EJTKJs RHTs POUT»s DAREA, W29 TS» TPULSEs AS29PCRSIsTCURISTCORZ
21y RIG3MXs 229 RIMXMXs Z3s APMNy Z4s HZMN» DKAREASs TENSMXs
EXs PHIMXs EPSMX, ERRMXs DGMXs Rls BDIMAXs VTERMy PHIMXXsHZNMS»
PIs IMAXs JMAXs NXs NYs NADs NX29 NY2s NXYs NXDIMs NYDIMs NPT,
IPLOT yNITERsNBUF s NXMeNYMaNMSsNFLAGID D1 sD2sP19P2+SRTD1sSRTD2
RSRD129XCENsTLASTsSORT89PNDC s GCONO 2GCON 9RO 1 sHCZ109HCZ209HCZLIN
HCZ2MsHCZ12 s ALPHL sALPH2 s BET19CONL s CUN2 s HZO s HZN sEXC o EXN W T 19T 2
CCMMON Z0UTS/ NBVsSCLFACINRSsMP“sNCW o NEXTT oNPLOT sNPUNCH
C***********%****************%*‘K‘*****
COMPLEX A(644+64)s RI6Ly64)
LOGICAL LD
DIMENSION TENG(10), EPSC(10)s HZSAVE(2)

INITIALIZE Z-STEP ON FIRST CALL

N0

IF (LLD) GO TO 41
FIZN=0 g}
HZNMS=u e}
HZSAVE({1)=0aC
HZSAVE(2)=0e0
Pl=¢eb
P2=040

P3=]el
EXN=1e0

2ZF = ZFINAL / K % % IDTH*%2

2 XaNa!

HZMX=0e10%#2Z7F

IF (NMSeEQefi) HZMX=( o 5#HZMX
HZMINI=1eUE~4%22F

IF (NMSeFNe() HZMINI={ o 5%HZMINI
ZCQORD=ZCOORE+HZ SAVE (MDY

—

22 = Z2(CM) / K # WIDTH#*#*2

22=ZCOO0RD

AN NS
N

INM = Z 7 F
ZNM=ZZ%PNK

7 = Z(KM)

[aNaXa]

Z=ZNM¥F%CTK+1e0E-6

D=2Z%ZZ+(1e¢0~ZNM) #%2
ZDD1=HZ#RNDIC(NDL)

38
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D1=D10(NDL)*{{160+20*ALPHI0(ND1)*ZDD1 ) ¥%2+2DD1%*ZDD1)
SRTD1=SQRT (D1}

VTERM = DISTANCE BETWEEN PULSES / DISTANCE BETWEEN GRID POINTS

[aNaXs!

VTERM=2,U%(1eC+PNS*#ZNM}/ (HX*SRTD1*PNO)
IFIVTERMsLTe0) GO TO 45

EPSMX=0.0

JC=IFIX(1eO/VTERM)+1

DC=FLOAT(JC~2) '
IF (NCWeEQel) GO TO 200

IF (DC) 48949550

EXIT OPTIONS

S£0NN

5 NPUNCH=0
NEXIT=1 ,
PRINT 100 Z '
100 FORMAT(//2Xs *AT Z=%s Fbebs * KMs A DEAD ZONE 1S PRESENT IN THE C
+ALCULATION*) v '
CALL OUTPUT(eTRUEs)
STOP

46 PRINT 101 Z
101 FORMAT ( 7/ 2X #AT Z= % F6e4 * KM, [HERE ARE MORE (RAN 1U PULSES
« PER CELL PRESENT IN THE CALCULATION®)
sTOP
C
47 NPUNCH=0
NEXIT=1
PRINT 103s Z )
103 FORMAT( 7/ 2X #AT Z= # F7e4 % KMs THE CALCULATED HZ IS SMALLER TH
AN THE MINIMUM ALLOWED VALUL* )
CALL OUTPUT(«TRUE )
STOP

R R S L e

RN RH AR FRANRAAXFRFRFRRTFERARFARRAARD

UM THE INTENSITY ACKOSS THF GRID FOR ULTI-PULSE
INTEGRATE THE INTENSITY ACRKRGSS Trb GRIW FOR Cd

LESS THAN ONE PULSE PER CELL

POO0NO0 NYONN

0

T1=VTERM
I111=11+1
F1=111=vTERM
F2=1e¢0~F1
DO 4 J=14NY
DO 4 I=2,4NX
IF(I-111.GE«l} GO TO 44
EPSO(IsJ)=EPS(IsJ)
EPS({IsJ)=lUel
GO T0O 4
44 EPSO(IsJ)=EPS{IsJ)
EPS{I s J)=F1#(TENS(I=11J)+EPS(I-T19J) )+
o F2R(TENS(I-T111sJ)+CPS(I=~111sJ) )"
IF (TENS(lsJ) «GTe UaUSHTENSMX) EPSMX=AMAXL(EPOSMXsEPS(IsJd))
CONTINUE
GU TO 51

IS

ONE TO TwO PULSES PER CELL

;SO0 N0

9 UTERM=2 4 O%¥VTERM
Fl=2e0=UTERM
F2=1e0=F1

39
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DO 5 J=1,sNY
EPS1=040
TEN1=0e5#{TENS(19J)+TENS{29J))
EPSO(29J)=EPS(25J)
EPS(2sJ)=F1*TENL+F2#TENS(1sJ)
EPSMX=AMAX1I(EPS(2sJ)s EPSMX)

DO 5 I=3,NX
EPS1=F1#{(TENS(I-1sJ)+EPS(I~1> J))+F2*(IEH1+¢PSI)

TEN1=0e5# (TENS(I=19J)+TENS(IsJ))

EPSO(TsJ)=EPS(T4J)
EPS(I’J)—Fl*(TFN1+FP§1)+F2*(TFVS(I-lsJ)+FPS(I-laJ))

IF (TENS(IsJ) «GTe Le(O5#TENSMX) EPSHX=AMAXI(ERSNX»cPS(Tsd))
CONTINUFE

GC 7O 51

MORE THAN TwWwO PULSES PER CELL

IF (JC +GTe 10) GO TO 46
UTERM=FLOAT(JC)*#VTER}
F1l=20=-UTERM

F2=1e0=F1
DO 6 J=1,NY
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1=2 .
EPS0{11)=040

EPS0(2})=00

TENO(L1)=TENS(I=1sJ}

TENO(2)={TENS{I s J)+(FLOAT(JC)=1e0C)*IENS(I= 1;J))/FLOA|\JC)
DO 70 JJ=349JC

FJ=FLOAT(JJ~1)/FLOAT(JC) ,
TENO{JJ)=FIHXTENS( I 9J)+(1e0=FJII¥ENS(I=15J)

EPSO(JJ)=F1# (TENULJJ=1Y+EPSULII=1) ) +F2% 1 ENu JU=2 )} +EF LU uu=21))

70 CONTINUE :

EPSO(IsJ)=EPS(I4J)

EPS(1+J)=F 1*(TENO(JC)+EPSU(JC))+F2*(TENO(JC ~1)+EPSGJC-1))
EPSMX=AMAXLI{EPS(I+J¥s EPSHNX)
DO 6 I=3,4NX

EPSO(1)=EPS(I-14J)

TENO(1)=TENS(I=1sJ)

EPSO(2)=F1*(TENO{1)+EPSO(1))+F2* (TENO{JC)I+EPSO(JC))
TENO(Z)'(TENS(I;J)+(FLOAT(J()—l.b)*TENb(I-l;J))/FLOAI(JC)
DO 71 JJ=3sJC

FJU=FLOAT(JJ=1)/FLOAT(JC)
TENO(JI)=FURTENS (I 9 )+ (1eU-FU)*¥1ENSLI=190)
EPSO(JI)=FI*{TENO(JJI=1I+EPSC(IJ=1))+F 2% L IENU(JJ=2 }+EPSUJI=2) )
71 CONTINUE

EPSOIIsJ)=EPS(]sJ)
EPS(I9J)=F1*(TENO(JCI+EPSC(JC) }+F2% ( 1ENUIJC-1)+EPSULJC-1))

IF (TENS(IsJ) «GTe OeUSHIENSMX) EroSMA=AMAALIEromasErsilsu))

6 CONTINUE
GO TO 51
C
C COMPUTE CW INTEGRAL
C
200 DO 11y J=1aNY

EPSO(1sJ)=EPS(14J)
EPS(L1sJ)=Ue5%HXRTENS (19d) %% IUTH/(VODT*(1.+PN5*LNW))
1 #SQRT(D1)
DO 110 I=24NX
EPSO(IsJ)=EPS(1sJ)
EPS{IsJ)=EPS(I-19J)}+uUe5*HX*(TENS(LsJI+TENS(I=10J) ) ¥WILTH/
1 (VODT#(1++PNS¥ZNM) )
1 *¥SQRT(D1)
IF (TENS(I8J)eGTaletB%¥TENSMX) EPSHX=AMAXLIEPOMAsEPS1Iad))
110 CONTINUE
C

C 3 3 3 M S0 I NS R B N NI Y
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EXO=EXN

EX=EXP(~PNALF#ZNM)

EXN=EX

GCON=GCONO*EX

IF (LD} CALL VTRANS(AsND1)
HZ0O=HZN

HCZ10=HCZIN

HCZ20=HCZ2N

CALCULATE THE Z=INTEGRALS WHEN NMs = v

IF (NMSeNE«0) GO TO 52

HZNMS=HZ0

HZ1=CON1%#HZO

HZ2=CON2%HZ0

ZD11=HZ1#RNDIO(ND1)

ZD12=HZ2%RDIO(NN1)

ZD21=HZ1#RD2G(ND1)

Z2022=HZ2¥RN2G(ND1) )
DI1=D1CGINDL)#({1eOQ+2e HALPHIO(NDYI*ZD11)%%24+2D11%#2D11)
D12=DI0INDLII*((1e0+2s UXALPHIO(NDL1)Y*ZD12)%%#242D12%£D12)
N21=D20(NDL)I#{ (1e0+2e #ALPH2U(NDI)#ZD21 ) %%#242021%2D21)
D22=D20(ND1II*¥((1e0+2e v*¥ALPH2CIND1)#2D22 ) %%2+,D22%£D22)
RD11=1.0/D11

RD12=1eu/D12

RD21=1.0/D21

RD22=140/Nn22

RSRDS1=SQRT(RDI1*RD21)

RSRDS2=SQRT(RD12¥RD22)

THE 3 Z-INTEGRALS

HCZ10=0U e 5%HZO% (RD11+RND12)
HCZ20=0e5%HZO* (RD21+R022).
HCZ12=0e5%HZOX (RSRDSI+RSRDSZ)
WT2=HCZ12 ’

COMPUTE NEW 7 INCREMENT IM Z/KA®%¥2 UNIIG

HZN=P3#AMIN1(UaU4%D]ls e04%D2s PHIMXX/
(RSRDI2¥GCON®(EPSMX+1 e GE~5L)))
IF (HZINeGTeHZMX) HZIN=HZMX
IF (HZN oL Te HZMINI) GO 10 47
IF (HZN «GTe Z22F=272=HINMS) HLN=LLF=£L-HiNMs
HZ=HZO+HZN
HZSAVE(ND2 ) =HZ

COMPUTE THFE THREE Z-INTEGRALS

NnO ONLY OMN FIRST CALL

IF (LD) GO TO 54

HZ1=CON1#HZ

HZ2=CON2%*HZ

ZD11=HZ1#RD1U(ND2)

Z2D12=HZ2*RD1u(ND2)

ZD21=HZ1#RD2J1(ND2)

ZD22=HZ2%¥RD20(ND2)

D11=D1U(ND2)I*¥(({leU+2e U#ALPHIG(NDZ2)Y¥ZD11)1%%24+£LD11%24D11)
DI2=DLU(ND2)#((1el+2e UHALPHIU(ND2)#£D12)#%#2+20012%012)
D21=D2I(NDN2)¥((1eU+2e URALPH2UIND2) #2021} %%24,D21%.0D21)
D22=D2U(ND2Y#¥((laU+2 e URALPH2U(ND2)#2D22)%%24+,1022%.022)
RD11=1.0/D11

RD12=1.0/D12
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RD21=1.0/D21

RD22=140/D22 -
RSRDS1=SQRT(RD11#RD21)
RSRDS2=SQRT(RD12%RD22)
HCZ10=0o5%HZ*¥{RD11+RD12)
HCZ220=045%HZ2¥(RD21+RD22)
HCZ12=C o 5#HZ* (RSRDSI+RSRDS2)
WT1l=0eu

WT2=HCZ12

COMPUTE THE PHASFE CHANGE IN THIS LCOGP WHEN N¥&§ NE O

CONTINUE

43
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PHIMX=0,0 :
IF (NMS +EQe 0) GO TO 80
DO 55 J=1sNY
Y=YZERO+FLOAT (J~1) *HY
DO 55 I=1sNX
X=XZERO+FLOAT(I=-1)#HX
GNEW=GCONO* (WTI*EXO*EPSO(IsJ)+WT2HEXN®EPS (1))
PHI=0e5%P1% (HCZ10%G1(1)+HCZ20#G2(J)=GNEW)
PHI=PHI-X#X#DALPHI (ND2)~Y*Y#*DALPH2 (ND2)~A%*DBE,1.ND2}
B{IsJ)=B(IsJ)*CMPLXICOSIPHI}s SIN(PHI))
IF (TENS(IsdJ) eLle UsuS*iENSMA) GU U bb
PHIMX=AMAX1(PHIMXs Ue5#GNEwW)
CONTINUE
GO TO 60

COMPUTE THE PHASE CHANGE IN THIS LOOP WHEN NMS = o

DO 85 J=1sNY

Y=YZERQO+FLOAT(J=-1)#HY
DO 85 I=1sNX

X=XZERO+FLOAT(I-11}#HX

GNEW=GCONC* (WT1*EXO*EPSO(TsJ)+WT2*EXNYEPS(19J))
PHI=Ce5#P1%(HCZ10%G1 (1) +HCL20%G2(J)~GNEw)
PHI=PHI-X*X#DALPHY (ND2)=Y#Y#DALPH2 (MD2)=X%*DBE(1(ND2)
AlTs)=A(T9J)*¥CMPLX(COSIPHIY s SINIPHIY)

IF (TENS(IsJ) oLTe UeISHTENSMX) GO 10 85
PHIMX=AMAX1(PHIMXs Ue5#GNEV)
CONTINUF
RETURN
END
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SUBROUTINE INTENS(As LI)

C : .
C THIS SUBROUTINE TAPERS THE BOUNDARIES OF THE COMPUTATIONAL
C GRID TO ZEROs FINDS THE INIENsSIty Ay EACH GrID ruli,

C AND PLOTS THE CONTOURS OF (HE FOURIER 1RANSFORMED MATRIAs
C .

C

**************,**************'********
COMMON /AAA/ EPS(644+64) sEPSOI64964) s AOUI{21599)9sBOUILTs1U)
o AIN(2+64)9DALPHL(2)9DALPH2(2) oDBE 1112} 9ALPH1UZ2) s ALPH2UL2) s
. BET1v(2)s D10(2)s D2Ut2Ys RDIUt2)s KDZ2wiZ)s wRIiD1uvZ)s ACENULZ)
COMMON /BBB/ TENS(64s64) s Gl164) s G2164) s PHAGEL 1 64) s PHAGEZ2:164)
s CONMIN(10)aM2(3)9SV1(64)5V2164)sPARMIBL) '
COMMON /SINGLS/ Fs PNAs PNALFs PNKs PNOs PNSs PNDs PNZs HXs hYy
HZs 29 ZZ9ZZF9 ZNMy ZFINAL» XZERO9 YLEROs wIDIHs ALPHA5 wNy
VODTs OMDTs HTs ENERGYs ALFPHACs Cos REFRACs GAMMAY Evws CiKo
EJTKJs RHTs POUT» DAREAy w2y 159 iPULSEY An2srCieoly 1 CurlsCuUk2y
21y RI6G3MXs Z2s RIMXMXs £39 APMNs 24y HzMNs DKAREASs (ENOMXS
EXs PHIMXs EPSMXs ERRMXs DGMXs R1ls BDIMAXs VIERMs PHIMXXsHLNMS
PI, IMAXs JMAXs NXs MYy MADy NX29s NY2s NXYs NXDIMy NYDIMs NPy
IPLOTsNITERSNBUF s NXMaNYIMsNMSaNFLAGIDsD1sD29P19P29SRID1ISRID2
RSRD12sXCENsTLASTsSQRTBIPNDU»GCONUsGCONsBD I shTe109HCL209HCL1INS
HCZ2NsHCZ12 s ALPHL s ALPH2 s E 11 sCUNT 9 CON2 sHeUsHLINSEAUSEANS w1 1ow 2
COMMON /OUTS/ HNBMsSCLFACINKO s PiisNCw s NEAT: s NPLO 1 s NPUNCH
[T R NS RN I N O R A R I 2 TR S T A T T T I SN N R R
COMPLEX A(64364)
LOGICAL LI

C TAPER BOUMDARY VALUES TU ZERU

IF (L1) GO TO 12u
DO 100 I=1sNX
AlTsl)=usl
ACTsNY) =0t
AlT52)=A(T52)%01,5

100 A(Ls(NY=1))=ACI4(NY=1)1%04.5
DO 110 J=ly4NY
Al1,J)=0,0
AINXsJ)=Dar
A(25J1=A(2,J) %045

11¢ ACINX=1) 9 J)=A((NX=1)sJ)"Uaeb
12¢C CONT INUVE
C

C COMPUTE THE INTENSITY AT FACH GRID POINT AND LOCATE Trik MAXIMUM

TENSMX=C el

DO 9 J=1sNY

DO 9. I=14NX
TENS(IoJ)=ALT15J)#CONJGIA(TI))
IF (TENS(IsJ) eLEs TEMSMX) GO TO 9
IMAX=1
JMAX=U .
TENSMX=TENS(IsJ)

9 CONTINUE

RETURN IF NOT PLOTTING FOUKIER TRANSFURF S

[aXaNe!

IF (eNOTe LI} GO TO 15

RESORT ARRAY WHEN PLOTTING FUURIER TRANSFORNS

[aNaNa]

DO 16 J=1sNY2
DO 18 I=194NX2
HOLO=TENS(IsJ)
TENS{IsJ)=TENSII+NX2sJ+NY2)
TENS{I+NX2 9 J+NY2) =HOLD
18 CONTINUE

45
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SSPARAMA: A NONLiNEAR, WAVE OPTICS MULTIPULSE
(AND CW) STEADY-STATE PROPAGATION CODE WITH
ADAPTIVE COORDINATES

INTRODUCTION

Several methods of propagating CW high-energy laser beams through the atmosphere
have been reported previously [1,2]. This report will describe a method for propagating
multiply pulsed laser beams in a nonlinear atmosphere by adapting the coordinate system
to the amount of thermal blooming. This technique increases the accuracy of thermal-
blooming calculations and extends the capability of the code in the case of extreme beam
distortion.

The computer code SSPARAMA calculates the steady-state intensity pattern of a
train of high-energy laser pulses propagating through the atmosphere in the presence of
thermal blooming. Steady state is achieved when enough equally spaced, equal-energy
pulses have been propagated for transients in air heating to have died out. In the steady
state a single pulse will propagate in an atmosphere that has been heated by many
preceding pulses which have the same energy distribution as the pulse one is calculating.
The pulse widths are assumed to be short compared to the sound transit time across the
face of the beam, so that self-blooming will not take place. Blooming occurs only as a
result of air heating by preceding pulses. However, to avoid problems of plasma forma-
tion, the pulse width must be sufficiently long that the critical intensity for air break-
down is not exceeded. Finally, as the pulse is propagated from one coordinate plane to
another, coordinate transformations are performed to insure that the transverse scale
lengths are adapted to the amount of thermal blooming induced on the pulse train by the
negative lensing influence of the heated atmosphere.

Another requirement for steady-state propagation is that a cooling mechanism exist
for removing heated air from the path of the beam. In SSPARAMA, cooling is provided
either by a wind moving perpendicular to the propagation direction or by beam sluing
about an axis in the aperture plane perpendicular to both the wind and the propagation
directions. The steady-state density changes Ap introduced in the path of a given pulse
by energy absorption from all preceding pulses can then be expressed as [3]

— 0 2

Ap = -2 — aEp e > |¢>(x—nAts(vo +Q2),y,2)] 1)
Cs n=1

Manuscript submitted October 14, 19786.
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WHITNEY, MADER, AND ULRICH
where

z = the distance in the propagation direction measured from the aperture plane,

x = the distance in the wind direction measured from beam maximum intensity
in the aperture plane,

v = the ratio of atmospheric specific heats (= 1.4),
¢; = the speed of sound in air (=340 m/s),
o = the absorption coefficient for the laser radiation,
Atg = the pulse spacing,
Ep = the energy of each laser pulse,

vg = the wind speed along the x direction perpendicular to the direction of
propagation; and

£ = the angular sluing rate of the beam about the y axis.

Finally ¢ is the normalized steady-state energy distribution of each pulse at the z plane:

f 16(x, 3, 2)|2 dxdy = 1. @)

-o0

This density reduction Ap changes the index of refraction from its ambient value ng,
where ng ~ 1, to

n? =~ n02 + 3NAp,

where N is the molecular refractivity of air (*0.154 cm3/g). The distribution ¢ must
then be calculated self-consistently from the propagation equation:

. 9 02 02
2ik — + —— + —— + 3NEk2A 2yip = 0, 3
2 2+ 250 2 o910 3)

where & = 27t/\ is the wavenumber of the laser radiation. It is assumed in SSPARAMA
that at z = 0 the pulse train has a spherical phase front and a truncated intensity profile.
For example, when truncated Gaussian pulses are propagated

¢(xs Y, 0) = Ng¢g(x, y), x2 + y2 < 2(12,
=0, x2 + y2 > 242, )
where
Bg(x, y) = a\l/; o-[1+(ika®/F)] [(x2+y2)/a®]/2 5)



NRL REPORT 8074

and N is a normalization constant insuring that Eq. (2) is satisfied at z = 0. Two scale
lengths, a and f, are defined in Eq. (5). The scale length f, the initial curvature of the
phase front, defines the distance from the aperture to the focal plane. At a distance a
from the aperture center the beam intensity falls to 1/e of its maximum value, and the
beam is truncated at 1/e2 of maximum intensity.

Altogether eight variable physical quantities, a, f, &, «, Ep, Ats, vg, and 2 appear in
Eqgs. (1) through (5). All variations will not however lead to a mathematicaily distinct
problem. In SSPARAMA Eqgs. (1) through (5) are scaled so that distinct propagation
problems are defined in terms of five dimensionless parameters. The program is designed
to accept either the set of data with dimensions or the dimensionless set, and both sets
are printed out.

The scaling of Eqgs. (1) through (5) is carried out via the coordinate transformations

A = ._x_ o= .Z rdi— ..z_
X = a’ y = a’ z2 = f (6)
and the variable transformation
(%, 5,2) = ad(x,y, 2). (7)

By multiplying Eq. (8) through by a3, one can write the propagation equation in a form
which identifies the five dimensionless parameters characterizing propagation in
SSPARAMA:

2~
}¢=0- (8

5[%— 2814 Ng), 5, s]

o}

3, 92 . 92 S
N, =— + —— + —— — NpN,e Na®
{Z’N’* o7 " ox2 o3z  m et ,;1

The five parameters, N;, N¢, No, Ny, and N;, are defined as

Ny = ka?lf, | 9)
N, = .3Nk(fy; 12)oszp’ (10)
esa
No = of, (11)
_ _2a
No = o4 (12)
and
N; = Qf/vg. (13)

Np, is the Fresnel number of the free-propagation problem, and N,, Ny, Ny, and N; are
coupling strength, absorption, overlap, and sluing parameters respectively. N, was intro-
duced by Wallace and Lilly [4] and called the pulses-per-flow-time parameter. It
measures the number of preceding pulses which have heated the air across the beam

3
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aperture as the pulse under study begins to propagate. The solution to Eq. (8) is ob-
tained subject to the energy normalization

[i3 5,02 aza5 = 1 a9

and the initial condition
3(,5,0) = (§le-Ne@+52)/2 (15)
 where |§| = 0 for ¥2 + 52 > 2.

Equations (8), (14), and (15) are numerically solved in SSPARAMA on a 64-by-64
grid in the Xy plane. Since one would like to use as much of the computational grid as
possible to describe the variations in beam intensity, a scheme for adapting the coordi-
nate grid to the propagation must be used. For example, as the beam propagates, the
initial focusing causes the beam intensity pattern to decrease in size until the negative
lensing effects of the heated atmosphere accumulate to thermally defocus it. Moreover,
since the wind removes heated air from the path of the beam from left to right, a
thermal gradient is established that deflects the beam from right to left. If the computa-
tional grid were not moved or changed in size as the beam intensity was calculated from
aperture to focal plane, the intensity pattern would either be poorly sampled as it de-
creased in size or it would expand or deflect to reach the boundary of the grid and
invalidate the calculation.

A technique for adapting the computational grid to local changes in the size or
location of the beam intensity pattern has been developed by Herrmann and Bradley [5].
A slightly modified form of their technique has been incorporated into SSPARAMA and
will be described in the next section of this report. In the third section the numerical
procedures used in SSPARAMA will be described, and in the fourth section the code
usage will be explained.

COORDINATE-SYSTEM ADAPTION

The dimensionless form of the propagation equation can be rewritten more com-
pactly as

[2iN,0; + 0F +0F + k%% (n2 - 1)]§ = O, (16)

where n2 — 1, the nonlinear index of refraction, depends on ¢ as given by Eq. (8). The
XyZ coordinate system is normalized to the constant lengths a and f, and is fixed in space.
In this system therefore the beam will lie symmetrically about the origin of the %% plane
only at Z = 0 with an extent of order 1 (see, for example, Eq. (15)). When z # 0, a new
set of xy coordinates is needed to maintain the two properties that the beam be centered
about the xy coordinate origin and be of order 1 in extent. In general, one can relate
the xy and xy coordinates by a set of scale parameters Dy and Do and a deflection
parameter X, which are functions of Z. Since one would like to solve Eq. (16) in a set of
coordinates that adapt to changes in beam size and direction, the coordinate transformation

4
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must be related to these beam changes as determined by the linear and quadratic terms
of the phase front. By analogy therefore with the transformation to dimensionless
parameters, one must perform simultaneous coordinate and variable transformations.
The form of these transformations is suggested by linear propagation theory:

y = \/_% , (18)
. _;;k , (19)

and
3 = v 0i(B1 72+ 85240741 +75) (20)

/DD,

The constant scale change from 2z to z is done for convenience to eliminate N frEm the
z-derivative term in Eq. (16):

2iNRdz = 2id,.

The factor 1/\4/D1D2 is removed from ¢ to insure the form invariance of the energy
normalization:

fl%lz dxdy =f|w|2 dxdy = 1. (21)

When Egs. (17) through (20) are substituted into Eq. (16) and when the nonlinear
term is of negligible size and the beam has a Gaussian profile, D1, Dg, X, &1, &2, B, ¥1,
and Y2 as functions of z can be analytically determined for all z. However, when the
nonlinear term is important or when a non-Gaussian beam is propagated, the &’s and f,
which represent the effective quadratic and linear phase changes throughout the xy plane,
can no longer be so determined. One must adopt a more limited strategy for the em-
ployment of Egs. (17) through (20).

Consider, for example, that the quantities Dy, D3, X, &, ds, B, ¥1, and 52 are
known at z = z( and that their dependence on z is to be analytically determined as one
propagates to a neighboring xy plane at z5 + Az. Since

2 = 5, % (22)
2 - 1 2
8 = D, 3.2, (23)

o
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and
_ 1 x 0, X Y .
0; = E[azf(gazlnpl+m)ax - zazlnDzay], : (24)
one finds that
- w Va4 —2 -~ ~2 - ~ -~
2N,z + 02 + 02 + k2a2(n2 - 1)]——— ef(Q1x°+02y +BE+71+72)
[ ROz x y ( )]{I/Dng

i3 72 +89 52+ fE+T1 +72)
- et 2 il {Zi(az—-gazlnD1ax_——l—azxax_gazlnD2 a)’)

&DiDy vD1
. o 1 _ 3
- —;—(az InDy + 3, InDs) = 28,(71 +73) + 7 32 - [28,4/D;x +X) + f12
1

2i

1

+

[2& (/Dyx +X) + B9, + 2 + 1—)1; 32 - 4&2D,y?

+ 4idigyd, + 2idy + k2a*(n%-1) } Y = 0. (25)

For vanishingly small n2 — 1 and for a real Gaussian profile {¥/(x, y, 2g) one would deter-

mine D1, Do, X, &1, &2, B, ¥1, and 72 from the requirement that Eq. (25) be capable of
being put in the form

[2532 + Bl(axz +1-x2) +-L-)1—(3y2+1—y2) + k2a2(n2—1)]¢ =0. (26)
1 2

Then, as ¥ was propagated to z¢ + Az, it would acquire no z dependence and would
remain real and Gaussian; that is, all of the z dependence of ¢ would have been accounted
for in Dl’ e, ’72.

For the imaginary terms of Eq. (25) other than 2i 0, to vanish, the quantities D1,
Do, and X, which determine the scale and location of the xyz coordinate system, must
satisfy the equations

0;InDy = 4ad,, (27)
3, InDg = 48z, (28)

and ‘
9, X = 261X + . (29)

On the other hand, for the real terms involving 9x and 9y to vanish and for the scale
functions Dy and Dg to be factorable from the remaining x and y terms respectively, the
phase functions a1, dg, 5, ¥1, and Yo must satisfy the set of equations

6
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2D, 9,8, + 482D, = —, | (30)
Dy, .
~ ~ 9 _ 1
2Dy0,8y + 485Dy = — (31)
. D2
3,8 + 2X0,& + 28, (24X +f) = 0, (32)
~ 9a ~ ~ e _ 1
20,7, + 2X2%0,& + 2X0,8 + (28X +()? = “p (33)
1
and
| 20,5, = - . (34)
D, ,

Thus Eqgs. (27) through (34) will determine all of the z dependence of ¢ when Y(x, y, 2q)
is real and a Gaussian function of x and y and there is no lensing effect caused by heating
of the atmosphere; that is, Eqgs. (27) through (34) will describe beam focusing in the
absence of diffraction and nonlinear media phenomena. They are of more limited utility
when such phenomena are present. In this case, during the displacement of ¢ from z, to
29 + Az, linear and quadratic phase changes will arise from two sources. As a result of
focusmg at z = zg, the initial phases &;(z¢), &2(20), and S(zg) will become &1(zg + Az),
Gia (20 + Az), and B(zo + Az) through the solution to Egs. (27) through (34). In addition
however  at zg + Az will acquire linear and quadratic phases, Af, A&y, and Adgy respec-
tively, as a result of diffraction and thermal blooming. Thus at zg + Az a new factoriza-
tion of ¢ must be made, namely, :

' -
Vi3 20489) itih(ao e+ Gi(ag+he)i2 +fzorAs)i iy ]
\4/D1(Zo +AZ)D2(ZO +AZ) : ‘

¢, 5,2, + AZ) =

(35)

if ', which is to be propagated from zg + Az to zg + Az + Az, is not to initially have
quadratic or linear phase terms. After each step in propagation therefore &, &2, and 8
must be redefined as '

d1(zg + A2) = By(zq + Az) + ARy, (36)

dp(zg + Az) = dig(zg + A2) + Ady, (37)

and o
Blzg + Az) = Blzg +A2) + AF | (38)

in order to adapt the coordinate-system determination from Egs. (27) through (29) to
changes in phase that result from focusing, diffraction, and therma! blooming.

ATITSSYTONN
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In SSPARAMA, V is propagated from one z plane to another by finite-differencing
a phase-transformed version of Eq. (26). Then Awj, Aag, and Af are found in the xyz
coordinate system using the method of phase minimization discussed by Herrmann and
Bradley [5]. One requires that

f WI2[V(Axy x2 + Aagy? + ABx — v)]1% dxdy = minimum, (39)

2=z9+Az

where Y(x, y, 29 + Az) = [yle'?. It follows that

DiE - B,C;
Aoy = —————75, (40)
2(A1E _B]_ )
ACqy - BD
AB = 1v1 12 1 (41)
AlE _Bl
and
Aoy = 22 (42)
0y = —=,
2 2A2
where
Al Efledllz dxdy, A2 Efyzl‘plz dxdy’ (43)
B, = fxw dxdy, | (44)
Ci; = Im |Y*0, ¢ dxdy, (45)
D, = Im |xy*0,Ydxdy, Dy = Imfyw*ayw dxdy, (46)
and
E zﬁwz dxdy = 1. (47)
The factorization
U(x, , 29 + Az) = yleilBarx®+Aazy®+Abx) (48)

will then define ' at zg + Az as a wave function of minimum quadratic and hnear phase.
In particular, if ¥ is exactly a Gaussian beam, ¢’ will be real.
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The relationship between {Aay, Aag, A} and {Ad;, Adg, AB} is found by substi-
tuting Egs. (17) and (18) into Eq. (48):

. Aay '
Ag, = —%, (49)
Dy
~ o _ Ao
Ady = =2 (50)
D,
and
A 2801 X
AR = b _ 22us (51)
v Dy Dy

A similar set of equations will hold between {&;, &g, B} and {a3, ag, B}, which are
computed directly in the xyz coordinate system. When reexpressed in terms of oz, ag
and 8, Egs. (27) through (29) become

0;D1 = 4o, (52)
;D9 = 409, (53)
and
VD
and Egs. (30) through (32) transform into
0 = —— (1 +40.2), (55)
2D,
0,0y = ——(1 +4a), (56)
2 2D2
and
20[1‘3 .
0.8 = —. 57
2B D, (57)

Egs. (52) through (57) must be solved in terms of initial values at z9. The solutions are

201 9(29) 2 z -z 2
_ 1,2R0) ~ 20
Dy,9(z) = D1 2(z0) {[1 + _—D1,2(20) (= zo)] + [D_—l,z(zo)] }, (58)
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01,2(2) = @ 5(z0) * 11+ [20) 5(20)]12) 0 (59)
1,2 1,240 ) 1,2(%o D1 o(z0) »
1,2\<0
204 (29) 2 Tz~ 202
BE) = Blzg)4/ |1+ (z-2zp)| + 1 (60)
0 Di(z) ~ ° D (2)
B(zo)
X(2) = X(z9) + ——— (z - 2j). (61)
V' Dj(29)
‘ Finally the procedure for solving Eq. (26) in SSPARAMA is similar to the one
described in an earlier report [2]. A phase transformation on Y is made:
B(x,,2) = Y(x,y,2) e WDLExY a2 | (62)
where ‘
ge,y,2) = 2 (1-a2) + L 1-5%) + k2202 - 1), (63)
D, D, "
The equation for ® follows from Eq. (26):
[2i0, + H(x, y,2)]®P = O, (64)
where
= 2 gd [ 1 02 + i‘a V2> (i/2)f:'gd2'; ' 65
H=e ,,<D1xD2yeo (65)

\

By picking z{ to lie between 29 and 2o + Az, one can propagate & from z¢ to z¢ + Azg,
with first-order accuracy, by solving the equation

[2i3, + H(x, y, 2))]® = (2:'32 r 102+ iay2>c1> = 0. (66)
D, D,
Equation (66) is solved by Fourier transforming & [6],
By, ko 20) = [el1x020) 0, y, 20) dndy, (67)

and propagating ® to z¢ +Az:

~ ~ ’ . 2 2o+ Az 2 rz,+Az
q)(kl’ k2’ 2z + Az) = (D(kl, k2’ zo)e(l/z){kl Lo [1/D1(z)]dz+k2_£o [1/D2(z)]dz}. (68)

10
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The inverse transformation to Eq. (67) then yields ®, and Eq. (62) yields y(x, y,
zo + Az).
NUMERICAL PROCEDURES

The phase function g(x, y, z) of Eq. (63) can be written more usefully in the form

_ s g0) &kyz) C(69)

Di(@) Dg(2) /Di()Ds(2)

where
g1(x) =1 - x2, ' (70)
g2y) =1 - y2, (71)

and |
o ‘ 12 _
g5(x, 9, 2) = NN, e N"‘N"Z; Cb[x - \/_1(?)(1 +N,Ny2), , ] (72)

This expression for g5 is found by substituting the new variables x, y, z, and @ into
Eq. (8). The phase integral

Ap = f g(x, v, 2') 2’
2

appearing in Eq. (62) can now be partially evaluated and expressed in the form

_ ? g3(xy,2)
A0 = g1(x)AZ, + go(¥)AZy - D.G)D (z) (73)
‘ 1 2
where
zZ 4 - 2 » 2'=z
AZl’z = - = tanh~1 ({1 + [2“1 2(20)]2} RN 20[1,2(20)> (74)
26 D1,2(2) - D1,2(20) 2'=2;

The differential quantities AZ; and AZ, are similarly named as the coordinate differ-
ential AZ that was used in earlier code calculations Wthh 1nvolved only a smgle scaling
function D(z).

To complete the evaluation of Af, one must know the z dependence of g3, that is,

the z dependence of |®[2. Two options are provided in SSPARAMA, for evaluating Af,
depending on whether one has determined |®|2 at one or both of the integration

11
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endpoints. The procedures work as follows: Suppose first that the solution for Y(x, y, z¢)
has been obtained. Then one can compute g(x, y, 20), since |®(x, y, 20)I12 = IY(x, y, 29)I2.
To find ®(x,y, 29), however, one must evaluate .

z’
Ab’ Ef g(x, y, 2')dz', (75)
20

where zg lies between zg and the plane zg + Az to which one would like to propagate .
If ¢ is known only at zg, the zeroth-order approximation

A0’ ~ g1(x)AZ) + g2(¥)AZy - g3(x,y,20)AZ19 (76)

must be made, where

(77)

% dz'
AZyy = f .
2o VD1(2)D2(2)

Equation (66) can now be solved for ®(x, y, zg + Az) by the use of Fourier trans-
formations. Finally on performance of the phase integral

zo+Az
A9" = f g(x, v, 2') d2’ (78)
zl

Y(x, y, 20 + Az) can be obtained from ®(x, y, 29 + Az). In keeping with the accuracy
with which A8’ was approximated, A" can be approximately evaluated as

A8" ~ g1(x)AZ] + g,()AZY ~ g3(x, y, 20 + A2)AZYs. (79)

The differentials AZ7, AZ,, and AZ], are defined by the integrals of Egs. (74) and (77)
with the integration limits as specified in Eq. (78).

Suppose however that initially both y(x, v, z0) and ¥(x, y, 29) are known and that
the values of  at zp are to be propagated to the plane at z9 + Az. In this case the
phase integrals defined in Eqgs. (75) and (78) can be approximated using the integration
formula '

X0 +Ax
T fa)e(x) dx ~ waf(xg) + waf(xg + Ax), (80)
X0

which has fﬁ‘st-order instead of zeroth-order accuracy. The weights w; and wg are thus
determined such that equality will hold in Eq. (80) whenever f is a linear function of x:

2% xg+Ax 9 xg+Ax '
Cwy = <1+——)f g(x)dx - —f xg(x) dx - (81)
Ax Ax

X0 *o

12
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and

9 x5 +Ax 2x¢ xo+Ax
wy = Z.;f xg(x)dx — —A_x-f 8(x) dx. (82)
(i}

xo X,
Then, for example, in place of Eq. (76) one would have that
A0' ~ g1(x)AZ] + g3(¥)AZy — g3(x, ¥, 29)AZ3 - g3(x, ¥, 20)AZy, (83)

where AZ5 and AZ) are related through Egs. (81) and (82) to AZj, and an integration

over the function zA/D1(z)D2a(2):

2( z z(') r gt
Azy = 0 pgr, - 2 [ 24 (84)
20 ~ 20 20 ~ 20 Jyy VD1(z')D3(2")
and
' 2 % z' dz’' '
AZ4 = 7 |: ; ~ ZoAZ12 . (85)
20 = 20 |, VD1(z')D2(z")

Although integrations over D{l and D§1 can be carried out analytically in terms of
inverse hyperbolic tangents (as in Eq. (74)), integrals over 1A/D1Dg produce elliptic
functions. Both sets of integrations are handled in SSPARAMA numerically, with third-
order accuracy, using a second integration formula:

xo +Ax Ax
j f(x)dx =~ '?[f(xo +Axy) +flxg + Axg)l, (86)
xp
where Ax; = (1 -1A/3)Ax/2 and Axé =1+ 1/\/§)Ax/2. Again, as an example, con-

sider Eqgs. (84) and (85) and define

1

fi = (87)
b VD11 Da(zy)
and
fp = ——t— (88)

~ VDiG2)D3) |
where 21 = zg + (1 - 14/3)[(20 — 20)/2] and zg = z¢ + (1 + 1/3)[(20 — 20)/2]. One can

complete the numerical evaluation of AZ3 and! AZ}4 by rewriting Eqs. (84) and (85) with
the use of Eq. (86), in terms of f; and fy:

13
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'
ZO -

2\/_

AZy = ~ f2) - (89)

and

e

G-z (D) - azy )

The procedure by which Egs. (80) through (90) are employed requires that two sets
of values of | be stored at any time by SSPARAMA. At the beginning of the propaga-
tion step descnbed above, the two arrays contain the values of Y(x, y, z9) and Y(x, vy,
20), where zg < zp < zg + Az. At the end of the propagation step the values of
V(x, ¥, 20) have been replaced by Y (x, y, 29 + Az). These new values can then be used
to propagate Y(x, v, 20) to Y(x, ¥, 20 + Az'), where now zy < zg + Az < z{ + Az'. The
process of alternatively propagating one and then the other of the two arrays is repeated
until the focal plane, defined by the initial beam curvature, is reached.

Since both arrays are initially assigned the values Y/(x, y, 0), the process of
propagating one array past the other cannot begin until after the first propagation step.
The first 2 step is therefore taken using Eqgs. (76) and (79) to determine A9’ and A9”. In
general the incremental steps Az are selected in SSPARAMA according to a criterion that
the phase changes induced by g5 as computed from Eq. (76) be no larger than some pre-
assigned value of order 1 for all x and y. However, to carry out the first advancement of
¥ at z0 = 0, half of the initially computed Az value is used. This leapfrog procedure is
summarized for the first few z steps in Fig. 1.

The advantage conveyed by using Eqs. (76) and (79) to evaluate the phase integrals
A8’ and A9" is that only one Y array is needed in carrying out the calculation. Because
of the reduced accuracy in computing A6’ and A", however, smaller z steps are in
principle required to obtain the same results as when two arrays at different z planes are
used. To allow a quantitative comparison of these two procedures, both options for
propagating ¥ were installed in SSPARAMA and can be selected according to the value
of one of the input parameters to the code. For the same reason, another input param-
eter is also available that allows one to adapt or not adapt the coordinate system to the
amount of diffraction or thermal blooming occurring during beam propagation.

PROGRAM OPERATION

This section will describe the input parameters required to run SSPARAMA and
explain the data included in the output. A complete listing of SSPARAMA is included in
Appendix A.

To use program SSPARAMA, two input cards are required. The first specifies cer-
tain numerical parameters and selects various program options, and the second defines the

14
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DEFINEY; =¥,
PHASE CHANGE ¥,~®,.

SET ay'=05'= — %Ny,

AND SET f8= Aoy = Aay =AF =0,

z=0 z=4z

I Advance y:torAzg

NOW FIND o, az, AND 8
AND Acy, Aoy AND AB.

USE TO APPLY PHASE
CHANGE (¥y(z=01-+®,(z =0}

z=0 z=Az z‘=Azo+Az| '

Advance ®, 10 Az; + Azg

L 1
STEP2 < ®182) £iND gy, ap, AND § AND

Aay, Aa; AND 43 AGAIN
AND USE TO APPLY
PHASE CHANGE

L W, [Azg) 4 (Az0).

z=0 z=42 z= A10+Az1 z= A20+Az1+AzZ
Advance &, TO Azg + Az +42; |

|
STERS ) Oaz) - bzt A2} pNp 4y, o, AND

AND Aay, day, AND Ap.
APPLY PHASE CHANGE
WylAzg + Azy)>0,Azg + Azy),

< cee

Fig. 1—Leapfrog procedure for advancing the wave function ®

particular physical situation. This second card can contain the actual physical parameters

or a set of dimensionless parameters.

First Input Card

The parameters read from the first card are listed in Table 1. A description of each

of these parameters is as follows:

Table 1-—Pararheters Specified by the
First Input Card

Columns Name Format || Columns Name Format
1-5 PHIMXX |.. F5.0 36-40 | NPM 15
6-10 ROCULT| Fb5.0 41-45 |NBM 15
11-15 | HXY F5.0 46-50 | NPLOT I5
16-20 | NXY 15 -61-65 | NCT I5
21-25 I NCW 15 56-60 | NRS 15
26-30 | NAD 15 61-65 | NPUNCH 15
31-35 | NMS 15 75-80 |NID A6

15
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PHIMXX. This is the maximum allowed phase change in radians for any point in the
computational grid at each z step. It is used to define the newly computed z increments
HZN at each step, where

g3(x, Ys z)max

VDD,

in which g3(x, ¥, 2)max is the maximum value in the computational grid of g3, given by
Eq. (72). PHIMXX is nominally entered as 1.0. If more 2z steps are required, PHIMXX
can be decreased. In this case the z increment is tied to the amount of heating in the
atmosphere, becoming smaller automatically as large density changes take place or
becoming large and efficient when near-vacuumlike propagation occurs. If HZN exceeds
0.1 of the total propagation distance, the smaller of these two z increments is used. If .
HZN at any time is less than 107 times the distance to be propagated, the program exits
and an error message will be printed.

HZN = PHIMXX,

ROCULT. This is used when propagating uniform circular beamshapes with an obscuring
disk or a uniform rectangular beamshape. In the former case ROCULT is the ratio of the
occulting radius to the total radius. For a rectangle, it is the ratio of the y to the x
dimension. ROCULT is used only when NBM equals 4 or 5.

HXY. This parameter defines the size of the computational grid relative to the aperture
radius by

Ax = Ay = HXY

where Ax and Ay are the sizes of individual computational cells, which start out square.
Depending on the beamshape, values between 0.1 and 0.3 are typical.

NXY. This is the number of individual computational cells along the edge of the entire
computational grid. The FFT routine is more efficient when NXY is a power of 2, and
NXY is normally entered as 64.

NCW. This parameter permits CW propagation to be included by allowing the summation
in Eq. (72) to be replaced by an integral [7]. Before the summation is replaced, Eq.
(72) can be written in terms of physical parameters as

3N(y - 1)k20E, e %% =
(r-1) 5 P Z |P[x — n(vg +2)At, y, 2] 12.
Cg n=1

This summation is performed when NCW = 0. When NCW = 1, the program is in the CW
mode, and Eq. (72) is replaced by

8N(y - 1)k2aPe2?, /D]
Csz (UO + QZ)

0
j [B(x +x', y, 2)|2 dx',

16
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where P is the average power of a CW laser (P = Ep/At). The integration is performed
using a simple trapezoid rule. ,

NAD. When NAD = 0, the coordinate system adaption is not included. When NAD =1,
it is included.

NMS. When NMS = 0, the midplane integrations are not used. When NMS =1, they are

used.

NPM. When NPM = -1, the second data card contains physical parameters. When NPM =
+1, the second card contains dimensionless parameters.

NBM. This parameter selects one of the five beamshapes available within the program:

NBM = 0 —Infinite Gaussian, with WIDTH (a parameter read from the second input
card) being the e~! intensity radius;
NBM = 1—Truncated Gaussian, with WIDTH being the el intensity radius, trun-
\ cated at /2 X WIDTH or e~2 intensity radius;

NBM = 2 —Uniform circular aperture, with WIDTH being the actual aperture radius;

NBM = 3 —Uniform square aperture, with WIDTH being the dimension from the
center of the square to the edge (half-side dimension) in the x or y
direction;

NBM = 4 —Uniform circular aperture and an occulting disk, with WIDTH being the
total aperture radius and, as stated previously, with ROCULT being the
ratio giving the occulting disk radius; ’

NBM = 5 —Uniform rectangular aperture, with WIDTH being the half-side x dlmen-
sion and ROCULT being the ratio giving the y dimension. :

NPLOT. This determines the type and the number of plots given in the output:

NPLOT = 0—No plots;
NPLOT = 1—Final contour plot only;

NPLOT = 2—Final contour plot plus a plot of average intensity and peak intensity
versus z;

NPLOT = 3 —Preceding plots plus a plot of flux and area versus irradiance;
NPLOT = 4 —Preceding plots plus a contour plot of aperture intensity;

NPLOT = 5—Preceding plots plus Fourier-transform contour plots of aperture and
final intensity distributions.

NCT. This determines the contour levels used in the contour plots:

NCT = 0 —Contour plots use contour levels with 10%wincrements;
NCT = 1 —Contour plots use 3-dB contours (0.5, n=1, 2, ..., 10).

NRS. When NRS = 1, the final contour plot is corrected and standardized according to
an internal criterion, to remove the effects of different amounts of coordinate system

17
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adaption in the x and y directions. When NRS = 0, this plot can appear with nonuni-
form axes.
NPUNCH. This determines whether there is a punched-card output:

NPUNCH = 0~ No punched-card output;

NPUNCH = 1 —Punched-card output for later data processing.

NID. Up to six characters can be used to identify a run or a series of runs on both the
printed and punched output.

Second Input Card

The data contained on the second input card depend on the value of NPM. If NPM
= —1, the physical parameters listed in Table 2 will be read. A description of each of
these parameters is as follows:

OM. The slew rate in radians per second. Table 2—Parameters Specified
by the Second Input Card

HT. The interval between pulses in seconds, or When NPM = -1
the reciprocal of the pulse repetition frequency
(PRF). For CW propagation this should be set to Columns Name Format
1 second.

1-5 OM F5.0
ALPHA. The absorption coefficient « in km™1. 6-10 HT F5.0

11-15 ALPHA F5.0
ALPHAS. The scattering coefficient in km1. 16-20 | ALPHAS F5.0
ALPHAS is used to compute the total extinction 21-30 WIDTH E10.0
but is not included in the absorption that pro- 31-40 WN E10.0
duces atmospheric heating. 41-50 VO E10.0

51-60 ENERGY | E10.0
WIDTH. The aperture radius a in centimeters. 61-70 F E10.0
The particular definition is given in the preceding 71-80 ZF E10.0

subsection for each value of NBM.

WN. The wavenumber k& = 2r/\ or 2m/f\, where 8 is the beam quality and A is the beam
wavelength in centimeters.

VO. The wind velocity vy in meters per second.

ENERGY. The individual pulse energy E, in joules. For CW propagation ENERGY is
the average power in watts.

F. The focal length in kilometers.
ZF. The distance at which the calculation is to be stopped in kilometers.

As already shown, the propagation is a function of five dimensionless parameters.
Different combinations of the eight physical parameters, which are required to define

18
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these dimensionless parameters and which lead to the same values of the dimensionless
parameters, will produce identical results. In order that a unique physical situation be
specified, some physical quantities are also read from the second data card when NPM =
+1 (Table 3). They are not used to define the physical situation but rather to assign
units to the derived quantities at the end of the calculations. The quantities read when
NPM = +1 are: ’

Table 3—Quantities Specified F. Focal length in kilometers.
by the Second Input Card
When NPM = +1 HT. Pulse interval At in seconds (=1 second for
CW).
Columns Name Format
PNA. The f number = WIDTH/F.
1-5 F F5.0
6-10 HT F5.0 PNALF. Absorption number, ALPHA/F.
11-20 PNA E10.0
21-30 PNALF E10.0 PNK. Fresnel number,: WN'WIDTH2/F.
31-40 PNK E10.0 ~
41-50 PNO E10.0 PNO. Overlap number, 24/2* WIDTH/(VO *HT)
51-60 PNS E10.0 for an infinite and truncated Gaussian beam and
61-70 PND E10.0 2+ WIDTH/(VO - HT) for all other beam shapes.
71-80 PNZ E10.0

PNS. Slew number, OM*F/VO.
PND. Distortion number, 8Nk(y - 1)afEp/c2a voAt.

PNZ. The ratio of the distance at which the calculation is to be stopped to the focal
length, ZF/F.

Examples of Output

A series of multipulse runs was made varying the pulse spacing and energy so that
the average power remained constant and using a number of average powers. The results
of these runs are shown in Fig. 2 in the form of power optimization curves. The CW
curve is included so that the convergence of the multipulse curves to the CW curve, as
the limiting case when pulse interval is decreased, can be readily observed.

To test the SSPARAMA code in the CW mode, some comparison runs were made to
check against some results obtained from Jan Herrmann of Lincoln Laboratory, who
studied the propagation of a CW infinite Gaussian with a e™2 diameter of 70 cm. The
absorption coefficient was 0.07 km™1, with no scattering. The laser was twice-diffraction-
limited DF with a wavenumber of 8.5 X 103 cm™l. Two cases were considered at focal
lengths of 2, 5, and 10 km. The first case had a power of 10 MW, a wind speed of 250
m/s, and no slewing. The second case had 2 MW power, a 2-m/s wind, and a 0.02-s71
slew. The results, consisting of the area containing 63% of the focal-plane power and of
the peak intensity are summarized in Table 4. A;e) and I.¢] compare these quantities
with those that would have been obtained if there were no thermal blooming. The results
for these highly bloomed cases agree within about 5% with those of Herrmann.

19
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Fig. 2—SSPARAMA results (F = 1 km, diam = 70.7 cm
(1/e), @ = 0.1 km™1, k = 2966 cm™1, vy = 10 m/s, and

Q=0.1)
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Table 4—SSPARAMA Results for the Propagation of a CW Infinite Gaussian
With a Wavenumber of 8500 cm™1, an e~2 Diameter of 70 cm, an
Absorption Coefficient of 0.07 km~1, and No Scattering

Focal Area A Relative Area Peak Relative Peak
. Containing Arel ' . Intensity Ie1
Length | 63% of the Relative To Inlte"s]‘(ty Relative To
" Focal-Plane No Thermal peak No Thermal
(km) Power (cm2) Blooming (kW/em=) ; Blooming
First Case: 10 MW Power, 250-m/s Wind, and No Slew
2 57.6 20.3 147 0.0464
5 658 37.0 10.3 0.0251
10 3543 49.8 1.33 0.0184
Second Case: 2 MW Power, 2-m/s Wind, and 0.02-s1 Slew
2 64.8 22.8 26.8 0.0422
5 474 26.6 2.96 0.0359
10 - 2018 28.4 0.495 0.0341 .

Another example of SSPARAMA output is' illustrated in Fig. 8, namely, the final
contour plot for the 5-km run from the first case with 10% contour levels. The com-

plete printed output from SSPARAMA is included in Figs. 4a through 4c.
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Fig. 3—Contour plot with 10% contour levels for the
5-km run from the first case in Table 4 (PNALF = 0.350,
PNK = 10.400, PNO = 0.002, PNS = 0.000, PND =
80.000)

Figure 4a, the first page of printed output, is almost self-explanatory. Both dimen-
sionless and physical parameters are listed; one is computed from the other, depending on
which was entered. The program options indicate the mode, either CW or MP and the
beamshape etc. The results summary in Fig. 4a includes the final value of the energy
conservation integral, Eq. (2). This quantity, which is ideally equal to 1, gives a quick
check on the validity of the numerical calculations. One factor that limits the accuracy
is the use of a finite mesh size. As this mesh is made finer, the intensity distribution gets
closer to the mesh boundaries, and numerical errors may enter through diffraction and
the use of a discrete Fourier-transform routine as energy is reflected off the boundary.
To avoid this reflection, the outermost boundary of the computational grid is set to zero
and the next outermost boundary is set to one half its value at each z step. Thus the
sum over normalized intensity gives an indication of how much energy was lost due to
boundary-value problems.

The area that is given in Fig. 4a is the area containing exactly 0.63 of the total flux -

obtained by linear interpolation between adjacent flux fractional areas. This area will
include contributions from several peaks as the intensity pattern breaks up under severe
blooming conditions, so its meaning may also require a suitable interpretation of the
intensity contour map. In addition the relative area and maximum intensity are calcu-
lated relative to the focal area and intensity of a vacuum-propagated infinite Gaussian
whose el diameter is equal to the value of WIDTH regardless of the beamshape being
propagated. ’
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*oe MEPHISTO IMPUT LATA eee

DIMENSIENLESS PARAMETERS PHYSICAL PARAMETERS NUMERICAL PARAMETERS
Nz 0,000045 RADIUS(M) = 05248 WX = 0,20
NALF = 0,350 ALPHA(I/KM) s 0,070000 HY = 0,20
AK o 10,4¢ K(i/ch) = 8488763 NX = 64
A a 0,00 v(ngS) . 249 98 NY & A4
NS & 0s00 BMEGALRAD/SECY = U.0000 PHIMXX =1,p00
A s 80,00 ENERGY(XJ) » 10420.69
A2 17000¢ F(KMY w 57000-
. DYISEC) = 1,000600
AUPHAS(L/KM) = 0,000000
PRGGRAM EPTIONS
MEDE tw
BEAVSHAPE INFINITE GAUSSIAN
ADAPTIGN YES N
WALF-STEP INYEGRATIEN YES
PUNCHED CARD ELTPUT Ne
NUMBER BF PLETS 5
LEW LEVEL CONTBLRS ve
RESCALE FINAL CBNYBUR PLOT . .VES

#%¢ RES(LYS eos

THE CALCULATIONS REACHED Z s 5700000 (KM)

THE SUM GVER NORMALIZED INTENSITY 3 4700000
THE NUMBER AF ZaSTEPS = 22

JVERAGE POWER (Kh) EMITTED AT APERTURE & 10420,654
AVERAGE TRANSMITYED POWER (KW) & 7343,339
MAREA (SQCF) CONTAINING 0.63 OF PIWEN = 687,995
A'REL (RELATIVE T® INF, GAUSSIAN) & 36,982
AVERAGE INTENSITY (KW/SGEM) IN THIS AREA = 7,031
PEAK INTENSITY (KW/SOCM) o 10,345
! REL (RELATIVE TQ INF. GAUSSIAN PEAK) w  0,02507

Fig. 4a—First page of the output by SSPARAMA, containing the
input that resulted in Fig. 3 and a summary of the results

‘Figure 4b, the page containing numerical data, begins with a list of internally com-
puted quantities that relate to the problems of air breakdown and ¢-cubed self-blooming.
They are printed only for possible future data analysis. Assuming the breakdown
intensity at 10.6 um is 3 X 108 W/ecm?2 and that this is inversely proportional to wave-
length squared, the following quantities are computed as a function of range: the mini-
mum area required for breakdown, the ratio of this minimum area to the vacuum area,
the maximum pulselength before breakdown occurs, the critical power, the saturation
time, the intensity produced by the critical power propagating in a vacuum, and factors
accounting for turbulence with values of C,2 of 10715 and 10-14. This is followed by an
x and y slice through the aperture to check the initial beamshape.

The quantities, including the values of HZN in z/ka? units, relating to the coordi-
nate system adaption are printed at each z step. The headings D, D1, D2, ALPHAI,
ALPHA2, BETA1, DALPH1, DALPH2, DBET1, and XCEN correspond to D, D1, Da, o1,
ag, B, Aoy, Aag, AB, and X used in the second section of this report. Also included is
EPSMX, the maximum value of the summation given in Eq. (72); PHIMX, the maximum
value of the positive phase change applied to ¥ to obtain ®; and PARM, the number of
pulses, for the MP mode, that occur in’'a computational cell.

Figure 4c, the output data, lists in the top portion the area, flux, the area fraction,
and flux fraction contained within each contour level. From these data the 63% area is
interpolated. This is followed in the middle portion by the z locations of the maximum
of the average and peak intensities, the minimum 63% area, and the minimum z step that
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see NOMERICAL DATA wes

RANGE (KM) AS2(Cv2) . AS2/A2D TP{SEC)H
0.£0500 98,99318 0:16193  5,44399003
58056 1018,03493 2,10781 5,09172004
1,11614  1395,21180 s 277194 3,57384004
©1,67467 16%8,41934 gosas 2.99¢70004
evz2722  1859,2353p 9,84094  2,9835.004
2,78278  2018,48219 16,51645  2,1981{5004
3,23833 2447 25482 30159665 ,9878,004
3,65389  2252,39000 67,41011  1,8224400¢
4,44944 2338059222 196731625 188244004
5,00500 2408,90687 424,44483  1,2765,004
NORMAL1Z2EL AMPLITUDE SAMPLES AT ABERTURE
AT %3 32 Ys 3 TO g4
0,0 6.0 6,0 €,0 0,0 0,0 0,0 0,0 0,0 0,0 9;0 0,0 0,8 0,0 0.0
0,6 0,5 0,5 ¢4 0,4 0,3 0,2 0,2 6.t 0,1 0,1 0,0 0,0 0,0 0.0
AT Y2 32 Xxs & 7D &4
GeD 0,0 0.0 €,0 0.0 0,0 030 0,0 0,0 050 0,0 030 0,0 0.8 0.0
046 045 0.5 Cs4 0.4 0,3 0,2 042 0.1 0,14 0.3 0,0 0,0 0,0 0,0
z #2 D £y ALPHAL ALPHAZ  BETAL
0,224 2,2#0¢3 0,9124 0,9924 0,9124 479649 »4,9048 075000
0,442 425003 0,8311 0,831 0,8339 44,7380 +4,3769 4033692
u.gs: .1-0:; n.zgsg 0.7553 0,7685 -l,ségg -0 ggee N szs;
0,86 0»0c3 n,6049 0,684 0,704 24,2 »3,8230 40,771
1,068 4:o-nc3 0,6189 09,6190 0,458 240719 2315(31 51! po4d
1,271 3 9.u;s 09,5370 0,5%74 0,593 §3;852% «3,1833 4132258
1,401 3.50005 Dia0aR 0:3996 0:303) 1Sieshy -2:de07 aiiils; §
1,672 3,94003 0,4441 0.4456 08081 43,4098 #2,5397 (134325
1,872 3,900¢3 0,3927 0,3951 04783 43,1748 «2; 1258 41%ay80
2,073 3,8+003 0,3442 0,348% 0,4436 42,9360 =1,8830 4170947
2!277 3'900e3 2986 o 3p48 04193 NI T T 1 I ‘1515
2,484 4, 040C3 0,25%4 0,2644 0,4p06 2;4240 =1,4239 .2 3
21656 41gnac3 01219 60,2281 0.3886 92’1443 ki ; 184
912 4.470c3 0,177% 0,1961 0,384 71,8449 o0, 265 4
§.048 3003 03428 0:1080 395 TN o 1] ??
3,367 4,40003 08,1300 0,1473 0,4084 51,1654 209 .3 1616
31650 ¢16e003 010821 0.1321 0i4412 wg 779 9 .3‘5546
3,869 4,8-003 0,0567 0,1239 0,491 #0,399¢ z 5771 16476
40142 3)¢egcd 0,0358 011220 05595 3or0769 83863 A
4,431 5,4-002 0,0202 0,1258 ¢ 6484 071B31  4,1%40 571423
41740 5'7.0¢2 0)0140 o:isaz 07652 0,4112 9125 3i7477
5,000 e.g-uca 0,0092 0,147% 076477 5, 7!17 .6 13666

have occurred during beam propagation. Then in the lower portion the peak and average

0,8731

PCR(H)
1104294005
5,12764005
e 157744005

.6732°oos
8,69914005
9,4546¢005
1,0243¢006
1,0994+006
2,17204006
1,2428+006

DALPHL

0,0004
0,0009
0, oos:
0,0049
0.,008¢
06,0136
0,0204
0,029%
0,04;4
0,0572
9,078g
67
o 1 H

zﬁ
o 3250
0,3473
06,3004
012350

0,1912
o, '1636

0,1158

1SAT(ISEC)
5,448300%
2,5054#005%
2,255%+00%

2,1293003
sl 9;' 0

2,0497.005
1,9943¢005
i, 19838005
i, 9227-005
1, 898!.005
1,8807000%

DBETL

3 np,3
-0.‘370
«0.%0%
0, 5920
w0, 6258
«0,5733
.0 477

13554
-n 2570~

-8,2020
eD,2833
»0, 2839
»0,2851
w0, 287

9 -9, .36084
-0.0030-11 3604

1SAT (W/nM2) TURRCARY
4,0712¢004  1.0000¢000
2,43704002 9.9957»001
3,92614002  9,9961w001
5,98954002  9,9805e004
9,2798.002  9,9301%004
1,92004003  §,7823%001
2,75844003  9,3%1%2001
5,98114003 8,8745.001
1, 72n2ooo4 4,9384,0p4
3,6826.004 2,4i8%.009
0,14-0,1 0,1 0,2 0,2 0.3
0,0 0,0 0,0 0,0 0,0 0.0
0.1 0.1 0,1 0,2 0,2 0.3
0.0-0.0 0.0 0,0 0.0 0,0
XCEN  EPSMX  PHIMX
0.6000 5.5«004 19,0000
»0,0306 5,24004 ,4949
«0,0920 5 0=004 01,4935
f,4949
0,49n3
,4885

»4,7020
53,4128
v6.2478 4.6u004

©7.6632 1,50004
1:.5%004

Se004
1Y)

1,70004

13,6639
15, 7174

Fig. 4b—Second page of the output, containing numerical data

-

TURBFOR2
1400004000
9.99474001
9,9378.001
9,6992-001
8,9967.00¢
7 3629,004

o

'7959:gg§
1,9731.002

PARN

2, 200004
139.004
ALy
n

$:62004
1‘6 004
1,5-004
i, L4e004
i, 3-0n4
4,2.004
112.004
1.1-004
i, 0=004
9 S«005

B.on

8,10005
7 6-on!
7.2=00%
7 o=0n%
6, 19=005
7! L0005
7.3-005

intensities, the 63% area and the location of the peak intensity in centlmeters are listed

at each z step

Summary of Program Sti'ucture

When the half-step integrations are used, the solution is advanced twice before the
information at each z step is stored. This can be seen from the flow chart of
SSPARAMA (Fig.'5). Thus, when NMS = 1, the program actually used twice the number
of z steps that are printed and included points approximately mldway between those

listed.

The structure of the code SSPARAMA is explained below and summarized in the
flow chart in Fig. 5.

® The call to subroutine START causes the ihput data to be read. The real part of
the 64-by-64 array Y is defined according to the beamshape specified. Initially the phase
of this array is zero.
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ese GUTPUT DATA ase

AREA PLUX AREA FLUX {RRADIANCE

LEVEL (30_cM) (KK FRACTIEON FRACTION  IKW/80-CM)

0:9000  B8778ien0y  B,8154002  0,0556 0,2173 9,8141ep00
0,8000 §37564002 ¢,6303003 0,1111 0,2219 ©,2804000
0,7000 2;634s002  2,3204003 0,1667 0,3159 8,8084000

0,6000 4;039¢002 3,2744003 00,2558 0,4458 8,10%+000
0,5000 8370%¢002  4,2813003 0,3667 0,583 9:333.380
0,4000 772004002 4,9154003  0,4556 0,6693 6,8264000
0,3000 9:483+002 9,7%543003 0,8000 0,7836 6,0674000
0,2000 ;:;7Z~oo§ :.:?3+nos 0,7444 0,861 S, 3744000
0,1000 +38i+00 19904003  1,0000 0,9438 4,38%6000
0:5300 tiazaegos 701283003  1.15%8 0,9704 s:Oo;.ggo
MAXIMUM AVG ! = 1,873+001 AT Zs 3,36%+000
MAXTMUM PEAK Ia 3,8614001 AT Z3 3,81pe008
MINIMUM AREA = 2,7414002 AT Zn §,6104000
MINIMUM K2 s 2,170-003 AT 2s {,008e006
z TAVE i63 IMAYX XPEAK YPEAK
o,dof 5,308 0,004 0,000
0,224 5,719 0,008 0,000
0,448 6,152 0,000 0,000
0,658 6,608 0,004 0,000
0,868 7,083 0,000 4,143
1,088 7,570 0,000 3,972
1,271 8,060 0,000 3,812
1,478 i 8,533 0,000 3,864
1,872 6,274 930,908 9,217 »3,304 3,523
1,872 6,791 848933 9,930 3,132 0,000
2,873 7,430 T8437166 10,776 5,047 3,297
2,277 8,260 6777725 12,064 5,464 37208
2,482 9,320 9179084 13,519 27,636 3,133
2,658 10,784 5037944 16,524 7,092 S,086
2,912 12,922 43147367 20,387 6,576 8,140
31934 15,727 33si3gp 25,611 <6,108 a:iaa
3,387 18,727 2767968 32,220 5,700 4,327
3,810 18,604 2747121 36,413 «5,398 6,576
3,869 15,%99 3215008 33,563 »5,227 3,469
4,142 12,970 3787764 21,360 ad 458 3,703
4,438 10,239 4707186 16,150 5,267 0,000
4,748 8,277 8697200 12,452 «3, 460 0,000
5,000 7,031 6377995 10,345 5,498 0,000

Fig. 4c—Third page of the output, containing the
remaining numerical data

® The initialization procedure continues with the call to INTENS, where the
aperture intensity is computed at each mesh point.

® The call to DENS computes the quantity g(x, y, 2) given in Eq. (63) and then
applies the phase change given by Eq. (62) which converts ¢ to &, The first z increment
is also computed.

® The main program loop begins here with a call to OUTPUT to store various
values until the calculations are completed.

® The call to ADVANCE applies the Fourier transform of Eq. (67) and then the
phase change of Eq. (68). The array is Fourier-transformed back to yield ®(z + Az).

® The intensity is computed with the call to INTENS, and the boundary values of
the array are tapered to zero.

® The call to DENS now includes a call to VTRANS, by which the phase change
of Eq. (62) is reversed, converting ® back to Y. The quantities {oy, a2, f} and
{Aaq, Aag, AB} are found in VTRANS, and the values of Dy and Dy are updated.
After the return to DENS, Eq. (63) is solved and the phase change of Eq. (62) is reap-
plied, converting ¥ back to ® in preparation for the next call to ADVANCE.
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|

CALL START

® READ INPUT CARDS
® DEFINE ¥
® INITIALIZE CONSTANTS

CALL ADVANCE

® CHANGE &, TO K SPACE
e ADVANCE &,
® BACK TO REAL SPACE

Y

4

CALL INTENS
® APERTURE INTENSITY

CALL INTENS
& GET INTENSITY

#

-

CALL DENS

® MP SUMMATION
® FIND INITIAL Z INCREMENT
® PHASE CHANGE ¥~ &

—
CALL DENS
CALL VTRANS
® MP SUMMATION
® Z INCREMENT & oy >y
°Vv,>d, o ADAPTION

»

CALL OUTPUT
® STORE CURRENT VALUES

DID
THE LAST Z
STEP TAKE LESS THAN
3 TIMES THE TIME
REMAINING?

CALL ADVANCE
® ADVANCE &,
¥
CALL INTENS ]
¥
CALL DENS —
® Z INCREMENT CALL VTRANS
* ¥, ~>®, ® H,> T,
e ADAPTION
YES
NO
CALL OUTPUT

® PRINT RESULTS
® DRAW GRAPHS

Fig. 5—Summary of the code SSPARAMA

25

AIATITSSYIOND



WHITNEY, MADER, AND ULRICH

® Now that one cycle of propagating the solution is completed, the code checks if
z final has beén reached and if the half-step mtegratlons are to be performed as outlined
in the section titled Numerical Procedures.

® When z final has been reached or the time limit of execution is near, the last
call to OUTPUT prints the results and ends this run.

The Appendix contains a complete listing of the code with copious comments
included.
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APPENDIX A
Listing of Code and Comments

PROGRAM SSPARAMA :
AR R R EE RN T I N N N N T A

COMMON /999/ Al(64+64)s A2(64964)y ITENS(64+64)

L A R I

COMMON /AAA/ EPS{64364) sEPSO(64964) 9sA0UT(1199)sBOUTIY9910)

e AIN(2364)9sDALPHL(2)sDALPH2(2) 93BETI(2) »ALPHL0(2) sALPH20(2) )

. BET1D(2)s D1G(2)y D20(2)s RD1VD(2)s RD20(2) s SRTD10(2)s XCEND(2)
COMMON /BBB/ TENS(64s64)s G1164)s G2(64)s PHASEL(64)s PHASEZ(64))

e CONMIN{IU)9M2(3)95V1(64)95V2{64)sPARMIEC)
COMMON /SINGLS/ Fs PNAs PMALFs PNKs PNOs PNSs PNDs PNZs

HXs HY»

HZs Z9 22+22Fs ZNMs ZFINALs XZEROs YZERQO» WIDTHe ALPHA3S WN»

VODTs OMDTs HTs ENERGYs ALPHACs CSs REFRACY GAMMAY Eicy CTK»

EJTKJs RHTs POUTs DAREA, %29 TSe TPULSEs AS29PCRISIsTCOR1STCOR2Y

Z1ls RIG3MXs Z2s RIMXMXs 235 APMNs Z4s HZMNs DKAREAs TENSMXs

EXs PHIMXy EPSMXs ERRMXs DGMXs R1ls BDIMAXs VTERMs PHIMXXSHZNMS» 14
PIs IMAXs JMAXs NXs NYs NADs MX2s NY2s NXYs NXDIMy NYDIM»> NPT

IPLOT o NITERsNBUF g NXM g NYMaNMS oNFLAGD D1 9sD2sP1sP29SRTD1sSRTDZ
RSRD12sXCENSTLAST s SURT89PNIIO s GLONO s GCONsED I s HCZ1C 9 HCZ205HCZIN
HCZ2NsHCZ129ALPH1 s ALPH2 sBET1sCONLsCON2 s HZOsHZNSEXOsEXNs T 1awT2

COMMON /0UTS/ NBMsSCLFACINKSsNPAaNCW s NEXTT 9NPLOT 9 NPUNCH
CH % % % % % F % R 8 ¥ X % O ¥ o R o R O % 3 ¥ # ¥ % ¥ % ¥ ¥
COMPLEX Als A2
LOGICAL LS

* KO ¥ 3¢

DATA (CS5=34000ei) s (REFRAC=04154) s (GAMMA=144)s (ETJ=1e0E-T7)s

. (CTK=1e"E~5)
DATA (NXDIM=64)s (NYDIM=64)s (NZ=20)
BANK s () 9/969/

C
C INPUT AKND INITIALIZATION
C
TSTART=TIMELEFT (DUIMMY)
LS=eFALSE
55 CONTINUE
CALL STARTI(LS)
NMEXIT=C
NITER=C
IPLOT=:
2L1=Caeb
222=0aelt
12=2
IF (NMS «EQe U) I2=1
C
CALL INTEMS(AlseFALSES)
CALL DENS(Als Als Z2Z1s 1s 1s «FALSES)
HZO=041)
C
C PR R FEE F R R o B AR B8 3 SE 38 JE 36 3 3 6 3L 3L T P R Rt o ok SRk
C
C MATN PRCGRAM LOOP
C
14 CONTINUE
NITER=MITER+1
C .
C STORE VALUFS FOR LATER PRINTOUT
C
2 CALL OUTPUT(«FALSES)
C .
C IF TIME REMAINING IS LESS THAN 3 TIMES THAT FOR Thi LAST
C Z STEP - EXIT
C

27

(P1=361415926%)s (RDI=240F6)s (LJTKJI=10

0FE=3})

3650 KO3R8 362634 56 30 368 S Je e XSSk
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3 TNOW=TIMELEFT (")
DT=TLAST-TNOW
TLAST=TNOW
IF(3#DTelLE«TNOW) GO TO 8
PRINT 2242
22 FORMAT(//25X25H%%% TIME ARORT AT Z(K:!') SFE17e591X30i%%3%/7)
GO TO 13
8 CONTINUE
C
C ADVANCE FROM 2Z TO 722+0DZs CALCULATING NEw A-FLITUUES I A
C
40 CALL ADVMCE(Al91)
CALL INTENS(Als oFALSFS)
CALL DENS(Als A2s ZZ19 1s [2s «TRUES)
"IF (Z «GFe ZFINAL) GO TO 15
c .
C REPEAT IF HALF-STEP INTEGRATICN 1S INCLUUED
C
IF (NMS «EQ. ) GO TO 45
CALL ADVNCE(A242)
CALL INTENS(A2s «FALStS)
CALL DENS(A2s Aly 2225 25 1s «TRUES)
IF (Z «GEe ZFINAL) GO TO 1%
45 CONTINUE
GO TO 14
C ) .
[ R RS b e R L R R R R L L T X R R R O S S R R R R ATV VR R
C
C SET NEXIT EQUAL 1 FOR PREI'ATUKE EXITS
C
13 NEXIT=1
15 CONTINUE
C
C EXECUTE ALL OUTPUT
C
CALL OUTPUT(+TRUF )
PRINT 16
16 FORMAT (1HY)
17 CALL STCPPLOT
C PRINT RUN TIME (CP TIME).

18
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TRUN=(TSTART=TIHMELEFT(LUNNY) ) fbU
PRINT 18, TRUNM
FORMAT (/ /516 (2H*)s%* RUN Tl b=%sF6e29% MINUTESH)

.STOP
END
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